Functional Nanoscale Devices

The recent emergence of fabrication tools and techniques capable of constructing structures with dimensions ranging from 0.1 to 50 nm (see Fig. 5.1) has opened up numerous possibilities for investigating new devices in a size domain heretofore inaccessible to experimental researchers. The WTEC nanotechnology panel reviewed research in the United States, Japan, Taiwan, and Europe to find that there is considerable nanoscience and technology activity in university, industrial, and government laboratories around the world. The insight gained from this survey suggests areas of strength and areas of possible improvement in the field.

[1]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[2]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[3]  H. Goronkin,et al.  Switching Characteristics Of Submicron Dimension Permalloy Sandwich Films , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[4]  Philip G. Collins,et al.  A simple and robust electron beam source from carbon nanotubes , 1996 .

[5]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[6]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[7]  J. Wegrowe,et al.  Quantum tunneling in magnetic systems of various sizes (invited) , 1993 .

[8]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[9]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[10]  A. Rinzler,et al.  Electron spin resonance and microwave resistivity of single-wall carbon nanotubes , 1997 .

[11]  Stephen Y. Chou,et al.  Patterned magnetic nanostructures and quantized magnetic disks , 1997, Proc. IEEE.

[12]  Karl Eberl,et al.  Optical gain and lasing in self‐assembled InP/GaInP quantum dots , 1996 .

[13]  A. Garg Dissipation in macroscopic quantum tunneling and coherence in magnetic particles (invited) , 1994 .

[14]  Z. G. Li,et al.  Giant magnetoresistance in magnetically inhomogeneous thin films , 1992 .

[15]  R. Cavicchi,et al.  Coulomb Suppression of Tunneling Rate from Small Metal Particles , 1984 .

[16]  Y. Lee,et al.  Room temperature operation of a quantum-dot flash memory , 1997, IEEE Electron Device Letters.

[17]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[18]  Electronics Letters , 1965, Nature.

[19]  Jian-Gang Zhu,et al.  Switching field variation in patterned submicron magnetic film elements , 1997 .

[20]  J. Gilman,et al.  Nanotechnology , 2001 .

[21]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[22]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[23]  Naoki Yokoyama,et al.  Room temperature operation of Si single-electron memory with self-aligned floating dot gate , 1997 .

[24]  Nikolai N. Ledentsov,et al.  InGaAs-GaAs quantum-dot lasers , 1997 .

[25]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[26]  Bernard Dieny,et al.  Spin-valve effect in soft ferromagnetic sandwiches , 1991 .

[27]  Egorov,et al.  Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. , 1996, Physical review. B, Condensed matter.

[28]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[29]  A. Fujishima,et al.  Photoinduced Magnetization of a Cobalt-Iron Cyanide , 1996, Science.

[30]  H. Ishikawa,et al.  Lasing at three-dimensionally quantum-confined sublevel of self-organized In/sub 0.5/Ga/sub 0.5/As quantum dots by current injection , 1995, IEEE Photonics Technology Letters.

[31]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[32]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[33]  Robert Celotta,et al.  Scanning electron microscopy with polarization analysis (SEMPA) , 1990 .

[34]  Stephen Y. Chou,et al.  Writing and reading 7.5 Gbits/in/sup 2/ longitudinal quantized magnetic disk using magnetic force microscope tips , 1997 .

[35]  Jiang,et al.  Giant magnetoresistance in nonmultilayer magnetic systems. , 1992, Physical review letters.

[36]  R Richard Nötzel,et al.  Self-organized growth of quantum-dot structures , 1996 .

[37]  H. Ahmed,et al.  Magnetoresistance behavior of submicron Ni80Fe20 wires , 1997 .

[38]  Piet Demeester,et al.  Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates , 1995 .

[39]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[40]  T. Someya,et al.  Transport properties of two-dimensional electron gas in AlGaAs/GaAs selectively doped heterojunctions with embedded InAs quantum dots , 1995 .

[41]  Bernard Dieny,et al.  Magnetotransport properties of magnetically soft spin‐valve structures (invited) , 1991 .

[42]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[43]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[44]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[45]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[46]  Jamie D. Phillips,et al.  Room-temperature operation of In0.4Ga0.6As/GaAs self-organised quantum dot lasers , 1996 .

[47]  Yahachi Saito,et al.  Cathode Ray Tube Lighting Elements with Carbon Nanotube Field Emitters , 1998 .

[48]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[49]  L. Forró,et al.  HALL EFFECT AND MAGNETORESISTANCE OF CARBON NANOTUBE FILMS , 1997 .

[50]  Andrew G. Glen,et al.  APPL , 2001 .

[51]  P. Gupta,et al.  Extended Abstracts , 2002, Neonatology.

[52]  J. Ansermet,et al.  Giant magnetoresistance of nanowires of multilayers , 1994 .

[53]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[54]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[57]  A. Caneschi,et al.  Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets , 1994, Science.

[58]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[59]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[60]  T. L. Hylton Limitations of magnetoresistive sensors based on the giant magnetoresistive effect in granular magnetic composites , 1993 .

[61]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[62]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[63]  Nikolai N. Ledentsov,et al.  InAs–GaAs Quantum Pyramid Lasers: In Situ Growth, Radiative Lifetimes and Polarization Properties , 1996 .

[64]  Toshifumi Ohkubo,et al.  Submicron Magnetizing andItsDetection Based onthePoint Magnetic Recording Concept , 1991 .

[65]  Paul B. Fischer,et al.  Single‐domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage , 1994 .

[66]  Malcolm L. H. Green,et al.  Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , 1993, Nature.

[67]  V. Roychowdhury,et al.  Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics , 1996 .

[68]  Young,et al.  Giant magnetoresistance in heterogeneous Cu-Co alloys. , 1992, Physical review letters.

[69]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[70]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[71]  Saied N. Tehrani,et al.  Submicron spin valve magnetoresistive random access memory cell , 1997 .

[72]  K. Hashimoto,et al.  Electrochemically Tunable Magnetic Phase Transition in a High-Tc Chromium Cyanide Thin Film , 1996, Science.

[73]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[74]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .

[75]  D. Loss,et al.  Bloch states of a Bloch wall , 1994 .

[76]  P. Stamp,et al.  Giant spins and topological decoherence: a Hamiltonian approach , 1993 .

[77]  Kimin Hong,et al.  NEW EFFECTS IN FERROMAGNETIC NANOSTRUCTURES , 1995 .

[78]  M. Asada,et al.  Lasing action of Ga0.67In0.33As/GaInAsP/InP tensile-strained quantum-box laser , 1994 .

[79]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[80]  D. DiVincenzo,et al.  Macroscopic Quantum Effects in Nanometer-Scale Magnets , 1992, Science.

[81]  C. N. R. Rao,et al.  RAPID COMMUNICATION: The decoration of carbon nanotubes by metal nanoparticles , 1996 .

[82]  Stephen Y. Chou,et al.  A Silicon Single-Electron Transistor Memory Operating at Room Temperature , 1997, Science.

[83]  Single‐electron effects in a point contact using side‐gating in delta‐doped layers , 1992 .

[84]  Matthew J. Carey,et al.  Giant magnetoresistance in heterogeneous AgCo alloy films , 1992 .

[85]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[86]  Philip G. Collins,et al.  UNIQUE CHARACTERISTICS OF COLD CATHODE CARBON-NANOTUBE-MATRIX FIELD EMITTERS , 1997 .