Scalability and design-space analysis of a 1T-1MTJ memory cell

This paper introduces a design-space feasibility region as a function of MTJ characteristics and memory target specifications. The sensitivity of the design space is analyzed for scaling of both MTJ and underlying transistor technology. Design points for improved yield, density, and memory performance can be extracted for 90nm down to 32nm processes based on measured MTJ devices. To achieve flash-like densities in upcoming 22nm and 16nm technology nodes, scaling of the critical switching current density is required.

[1]  S.V. Kosonocky,et al.  Scalability options for future SRAM memories , 2006, 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings.

[2]  Sungjoo Hong,et al.  Memory technology trend and future challenges , 2010, 2010 International Electron Devices Meeting.

[3]  Yiran Chen,et al.  Design Margin Exploration of Spin-Transfer Torque RAM (STT-RAM) in Scaled Technologies , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[5]  Ieee Staff 2011 IEEE/ACM International Symposium on Nanoscale Architectures , 2011 .

[6]  S. Le,et al.  A statistical study of magnetic tunnel junctions for high-density spin torque transfer-MRAM (STT-MRAM) , 2008, 2008 IEEE International Electron Devices Meeting.

[7]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[8]  S. Watts,et al.  Latest Advances and Roadmap for In-Plane and Perpendicular STT-RAM , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[9]  Bruce F. Cockburn,et al.  The emergence of high-density semiconductor-compatible spintronic memory , 2003, Proceedings International Conference on MEMS, NANO and Smart Systems.

[10]  K. Ono,et al.  A disturbance-free read scheme and a compact stochastic-spin-dynamics-based MTJ circuit model for Gb-scale SPRAM , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[11]  Robert A. Buhrman,et al.  Tunnel magnetoresistance and spin torque switching in MgO-based magnetic tunnel junctions with a Co/Ni multilayer electrode , 2010 .

[12]  Yiming Huai,et al.  Critical current distribution in spin transfer switched magnetic tunneling junctions , 2005 .

[13]  S. Watts,et al.  Non-volatile Spin-Transfer Torque RAM (STT-RAM): An analysis of chip data, thermal stability and scalability , 2010, 2010 IEEE International Memory Workshop.

[14]  Young-Jin Cho,et al.  Etch characteristics of magnetic tunnel junction stack with nanometer-sized patterns for magnetic random access memory , 2008 .

[15]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[16]  E. Chen,et al.  Non-volatile spin-transfer torque RAM (STT-RAM): Data, analysis and design requirements for thermal stability , 2010, 2010 Symposium on VLSI Technology.

[17]  Seung H. Kang,et al.  Design Consideration of Magnetic Tunnel Junctions for Reliable High-Temperature Operation of STT-MRAM , 2010, IEEE Transactions on Magnetics.

[18]  Arijit Raychowdhury,et al.  Modeling and analysis of read (RD) disturb in 1T-1STT MTJ memory bits , 2010, 68th Device Research Conference.

[19]  S. Miura,et al.  Analysis of MTJ Edge Deformation Influence on Switching Current Distribution for Next-Generation High-Speed MRAMs , 2009, IEEE Transactions on Magnetics.

[20]  N. Kasai,et al.  A 16-Mb Toggle MRAM With Burst Modes , 2007, IEEE Journal of Solid-State Circuits.

[21]  Z. Diao,et al.  Comparison of Scaling of In-Plane and Perpendicular Spin Transfer Switching Technologies by Micromagnetic Simulation , 2010, IEEE Transactions on Magnetics.

[22]  Kang L. Wang,et al.  Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells , 2011 .

[23]  H. Ohno,et al.  Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. , 2008, Physical review letters.

[24]  Jonathan Z. Sun,et al.  Spin angular momentum transfer in current-perpendicular nanomagnetic junctions , 2006, IBM J. Res. Dev..

[25]  D. C. Ralph,et al.  Magnetoresistance and spin-transfer torque in magnetic tunnel junctions , 2008 .

[26]  Arijit Raychowdhury,et al.  Design space and scalability exploration of 1T-1STT MTJ memory arrays in the presence of variability and disturbances , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[27]  J. Nowak,et al.  High-bias backhopping in nanosecond time-domain spin-torque switches of MgO-based magnetic tunnel junctions , 2009 .

[28]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[29]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[30]  V. Korenivski,et al.  Thermally Activated Switching in Nanoscale Magnetic Tunnel Junctions , 2010, IEEE Transactions on Magnetics.

[31]  M. Hosomi,et al.  A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[32]  M. Nakamura,et al.  A study for 0.18 /spl mu/m high-density MRAM , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[33]  H. Chang,et al.  Demagnetizing and Stray Fields of Elliptical Films , 1966 .

[34]  Hiroyuki Yamauchi A Discussion on SRAM Circuit Design Trend in Deeper Nanometer-Scale Technologies , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[35]  Z. Diao,et al.  Spin-transfer switching current distribution and reduction in magnetic tunneling junction-based structures , 2005, IEEE Transactions on Magnetics.

[36]  Bin Ma,et al.  Micromagnetic study of hotspot and thermal effects on spin-transfer switching in magnetic tunnel junctions , 2007 .

[37]  Mircea R. Stan,et al.  The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory , 2010, Proceedings of the IEEE.