Microstructure and Mechanical Properties of Magnesium Matrix Composites Interpenetrated by Different Reinforcement

本工作讨论的微观结构,并通过不锈钢(铁的18Cr-9Ni),钛合金(Ti系6AL-4V),和铝合金(Al-5mg的互穿铸态和挤压金属基复合材料的机械性能-3Zn)三维网络增强材料。结果表明,不同的增强材料具有不同程度的对微结构和镁基复合材料的机械性能的改善。其中,由不锈钢加强穿插镁基复合材料具有最大的抗张强度,屈服强度和伸长率,其是355兆帕,241兆帕,和13%,分别。与基质相比,它增加了通过分别47.9%,60.7%和85.7%。而且,随着铸态相比,作为挤出样品具有相对小的晶粒尺寸和均匀的粒度分布。铸态镁基复合材料的晶粒尺寸主要集中在200-300微米,而挤出的状态主要集中在10-30微米。其原因在于,增强件和矩阵,以及动态再结晶的发生的协调变形,导致在挤出过程中镁基复合材料的晶粒细化,从而提高其机械性能。此外,改进归因于加强本身和金属基复合材料的晶粒细化程度的效果。

[1]  T. Trzepieciński,et al.  3D microstructure-based modelling of the deformation behaviour of ceramic matrix composites , 2017, Journal of the European Ceramic Society.

[2]  R. Al-rub,et al.  Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures , 2017 .

[3]  K. Weidenmann,et al.  Effect of reinforcement size and orientation on the thermal expansion behavior of metallic glass reinforced metal matrix composites produced by gas pressure infiltration , 2017 .

[4]  Kyu C. Cho,et al.  Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs) , 2017, Journal of Materials Science.

[5]  J. Reddy,et al.  Modeling of elastoplastic behavior of stainless-steel/bronze interpenetrating phase composites with damage evolution , 2014 .

[6]  M. Gupta,et al.  Effect of interconnected reinforcement and its content on the damping capacity of aluminium matrix studied by a new circle-fit approach , 2003 .

[7]  J. Kim,et al.  Effect of resin matrix on the strength of an AZ31 Mg alloy-CFRP joint made by the hot metal pressing technique , 2018, Composite Structures.

[8]  Brian Boswell,et al.  Review of machining metal matrix composites , 2017 .

[9]  I. Maskery,et al.  Effects of magnification and sampling resolution in X-ray computed tomography for the measurement of additively manufactured metal surfaces , 2018, Precision Engineering.

[10]  S. Lemonnier,et al.  Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering , 2016 .

[11]  Amaia Calleja,et al.  Hole Making by Electrical Discharge Machining (EDM) of γ-TiAl Intermetallic Alloys , 2018, Metals.

[12]  F. Wakai,et al.  Thermal‐Shock Fracture and Damage Resistance Improved by Whisker Reinforcement in Alumina Matrix Composite , 2016 .

[13]  Bibo Yao,et al.  Anisotropic Charpy impact behavior of novel interpenetrating phase composites , 2018, Vacuum.

[14]  Andreas Mortensen,et al.  Metal Matrix Composites , 2010 .

[15]  M. Swain,et al.  Interpenetrating network ceramic-resin composite dental restorative materials. , 2016, Dental materials : official publication of the Academy of Dental Materials.

[16]  K. Shirvanimoghaddam,et al.  Porous and non-porous alumina reinforced magnesium matrix composite through microwave and spark plasma sintering processes , 2018, Materials Chemistry and Physics.

[17]  Sunil Kumar Srivastava,et al.  Modified shear lag theory based fatigue crack growth life prediction model for short-fiber reinforced metal matrix composites , 2015 .

[18]  R. Young,et al.  Microstructure and mechanical behaviour of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes , 2017, Journal of Materials Science.

[19]  A. Mishra,et al.  A deformation-theory based model of a damaged metal matrix composite , 2017 .

[20]  C. Kádár,et al.  The Effect of Matrix Composition on the Deformation and Failure Mechanisms in Metal Matrix Syntactic Foams during Compression , 2017, Materials.

[21]  Wenshu Yang,et al.  Effect of extrusion treatment on the microstructure and mechanical behavior of SiC nanowires reinforced Al matrix composites , 2017 .

[22]  M. Guessasma,et al.  A numerical investigation of effective thermoelastic properties of interconnected alumina/Al composites using FFT and FE approaches , 2016 .

[23]  O. Dezellus,et al.  Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure , 2017, Journal of Materials Science.

[24]  S. Bai,et al.  Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure , 2014 .

[25]  T. Langdon,et al.  Microstructure and microhardness of an Al-6061 metal matrix composite processed by high-pressure torsion , 2016 .

[26]  H. Geng,et al.  The abrasive wear properties of Al-Mg-Si3N4 metal matrix composites , 2006 .

[27]  H. Geng,et al.  Machinability of Metal Matrix Composites Reinforced by 3-D Network Structure , 2006 .

[28]  R. Pace,et al.  Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. , 2018, Acta biomaterialia.

[29]  M. Gupta,et al.  Use of interconnected reinforcement in magnesium for stiffness critical applications , 2008 .

[30]  M. Jiang,et al.  Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion , 2018, Acta Materialia.

[31]  J. Shiomi,et al.  Hot extrusion to manufacture the metal matrix composite of carbon nanotube and aluminum with excellent electrical conductivities and mechanical properties , 2015 .