Regularity of minimizers of a tensor-valued variational obstacle problem in three dimensions

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  G. Kitavtsev,et al.  Liquid crystal defects in the Landau-de Gennes theory in two dimensions - beyond the one-constant approximation , 2016, 1608.03139.

[3]  P. Bauman,et al.  Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals , 2015, 1511.01039.

[4]  Mark Wilkinson,et al.  Strictly Physical Global Weak Solutions of a Navier–Stokes Q-tensor System with Singular Potential , 2015 .

[5]  Nigel J. Mottram,et al.  Introduction to Q-tensor theory , 2014, 1409.3542.

[6]  Xiang Xu,et al.  Dynamic cubic instability in a 2D Q-tensor model for liquid crystals , 2014, 1406.4571.

[7]  L. Evans,et al.  Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models , 2013, 1312.4471.

[8]  E. Feireisl,et al.  Nonisothermal nematic liquid crystal flows with the Ball–Majumdar free energy , 2013, 1310.8474.

[9]  Elisabetta Rocca,et al.  Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential , 2012, 1207.1643.

[10]  F. Lin,et al.  Geometric Measure Theory: An Introduction , 2010 .

[11]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[12]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[13]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[14]  G. R. Luckhurst,et al.  Free Energies in the Landau and Molecular Field Approaches , 1986 .

[15]  Lawrence C. Evans,et al.  Blowup, compactness and partial regularity in the calculus of variations , 1987 .