Adapting innocent game models for the Böhm treelambda -theory

We present a game model of the untyped λ-calculus, with equational theory equal to the Bohm tree λ-theory B, which is universal (i.e. every element of the model is definable by some term). This answers a question of Di Gianantonio, Franco and Honsell. We build on our earlier work, which uses the methods of innocent game semantics to develop a universal model inducing the maximal consistent sensible theory H*. To our knowledge these are the first syntax-independent universal models of the untyped λ-calculus.

[1]  C.-H. Luke Ong,et al.  Innocent game models of untyped lambda-calculus , 2002, Theor. Comput. Sci..

[2]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 2000, Inf. Comput..

[3]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[4]  C.-H. Luke Ong,et al.  A Universal Innocent Game Model for the Böhm Tree Lambda Theory , 1999, CSL.

[5]  C.-H. Luke Ong The Lazy Lambda Calculus : an investigation into the foundations of functional programming , 1988 .

[6]  Mariangiola Dezani-Ciancaglini,et al.  Infinite lambda-Calculus and Types , 1999, Theor. Comput. Sci..

[7]  Jan Willem Klop,et al.  Infinitary Lambda Calculus , 1997, Theoretical Computer Science.

[8]  Guy McCusker Games and Full Abstraction for a Functional Metalanguage with Recursive Types , 1998, Distinguished Dissertations.

[9]  Pietro Di Gianantonio,et al.  Game Semantics for Untyped λβη-Calculus , 1999 .

[10]  Furio Honsell,et al.  Game Semantics for Untyped lambda beta eta-Calculus , 1999, TLCA.

[11]  Samson Abramsky,et al.  Games and full abstraction for the lazy /spl lambda/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[12]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[13]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[14]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[15]  Reiji Nakajima Infinite normal forms for the lambda - calculus , 1975, Lambda-Calculus and Computer Science Theory.

[16]  C.-H. Luke Ong,et al.  Games characterizing Levy-Longo trees , 2004, Theor. Comput. Sci..