Damage mechanics model for brittle failure of transversely isotropic solids : finite element implementation

A new continuum damage model, the wing crack damage (WCD) model, was developed for the analysis of brittle failure of transversely isotropic solids. Special attention was paid to the analysis of axial splitting under compression and tensile cracking under tension. In addition to the WCD model a three-dimensional version of the damage model proposed by Murakami and Kamiya was enhanced and implemented in ABAQUS/Standard FE software. The proposed WCD model is based on the use of the damage vector. The vector represents both the normal direction of the surface of the plane crack and the size of the damaged area. Damaging induces anisotropy in an originally transversely isotropic material. The evolution equations for damage are motivated by the wing crack growth mechanism. The evolution is based on propagation of pre-existing damage. The proposed model enables modelling of pre-existing cracks. The feature can be exploited in studying the effect of orientation and size distribution of pre-existing cracks on the failure of materials. The model was implemented in ABAQUS/Standard FE software as a user subroutine. The unsymmetrical behaviour of cracked materials under tension and compression due to the opening and closure of cracks is taken into account in the proposed model. In the work it was shown that the widely used strain-based crack closure criteria cannot be reliably applied in a two- and three-dimensional stress state. To attain a deformation localisation zone of finite width, a damage rate-dependent damage surface was introduced. The validity of the proposed model was verified by testing it against five basic structures composed of known natural materials (ice, marble and concrete). The numerical simulations revealed the capability of the model in modelling brittle failure modes of transversely isotropic materials.%%%%Tutkimuksessa on esitetty kaksi vauriomekaniikkaan (Continuum damage mechanics) perustuvaa materiaalimallia: Murakami Kamiyan (MK) malli, seka uusi "wing crak damage" -malli (WCD). Molemmat mallit on liitetty ABAQUS-elementtimenetelmaohjelmistoon UMAT-aliohjelmana. Esitetty uusi WCD-malli on tarkoitettu transversaali-isotrooppisten materiaalien haurasmurtuman mallintamiseen. Erityista huomiota on kiinnitetty yksiaksiaalisessa puristuksessa tapahtuvan kuormituksen kanssa yhdensuuntaisen halkeamisen seka yksiaksiaalisessa vedossa tapahtuvan kuormitusta vastaan kohtisuorassa olevan saroytymisen mallintamiseen. Esitetty WCD-malli perustuu "vauriovektorin" kayttoon. Vauriovektori edustaa seka tasomaisen saron normaalin suuntaa etta vaurioituneen alueen kokoa. Vaurioitumisen vuoksi transversaali-isotrooppisesta materiaalista tulee anisotrooppista. Vaurion kasvumekanismi simuloi siipisaron (wing crack) kasvumekanismia. Uusi WCD-malli mahdollistaa materiaalissa ennen kuormitusta olevien alkusarojen mallintamisen. Piirretta voidaan hyodyntaa tutkittaessa alkusarojen suunnan ja suuruuden vaikutusta materiaalin vaurioitumiseen. Halkeilleen materiaalin epasymmetrinen kayttaytyminen vedossa ja puristuksessa…

[1]  F. Leckie A course on damage mechanics , 1998 .

[2]  Sumio Murakami,et al.  An irreversible thermodynamics theory for elastic-plastic-damage materials , 1998 .

[3]  Y. Y. Zhu,et al.  A fully coupled elasto-visco-plastic damage theory for anisotropic materials , 1995 .

[4]  Zdeněk P. Bažant,et al.  Microplane constitutive model for porous isotropic rocks , 2003 .

[5]  C. L. Chow,et al.  On evolution laws of anisotropic damage , 1989 .

[6]  Mark Kachanov,et al.  On Modelling of “Winged” Cracks Forming Under Compression , 1996 .

[7]  K. Kendall Complexities of compression failure , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  S. Nemat-Nasser,et al.  Rock failure in compression , 1983 .

[9]  李幼升,et al.  Ph , 1989 .

[10]  T. J. O. Sanderson,et al.  Ice Mechanics: Risks to Offshore Structures , 1988 .

[11]  D. Halm,et al.  Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications , 2000 .

[12]  Nasser,et al.  Dynamic compressive strength of silicon carbide under uniaxial compression , 2001 .

[13]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[14]  Michel Frémond,et al.  Damage in concrete: the unilateral phenomenon , 1995 .

[15]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[16]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[17]  Matti Ristinmaa,et al.  Damage Evolution in Elasto-Plastic Materials - Material Response Due to Different Concepts , 2003 .

[18]  Andrzej Litewka,et al.  Load-induced oriented damage and anisotropy of rock-like materials , 2003 .

[19]  M. Elices,et al.  Fracture mechanics parameters of concrete: An overview , 1996 .

[20]  L. J. Sluys,et al.  Viscoplasticity for instabilities due to strain softening and strain‐rate softening , 1997 .

[21]  Sia Nemat-Nasser,et al.  Strain-rate effect on brittle failure in compression , 1994 .

[22]  Yann Charles,et al.  A modular damage model for quasi-brittle solids – interaction between initial and induced anisotropy , 2002 .

[23]  S. D. Hallam,et al.  The failure of brittle solids containing small cracks under compressive stress states , 1986 .

[24]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[25]  Malcolm Mellor,et al.  Mechanical behavior of sea ice , 1986 .

[26]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[27]  Hong D. Kang,et al.  Performance evaluation of elastoviscoplastic concrete model , 2000 .

[28]  Ahmed Derradji-Aouat,et al.  Mathematical modelling of monotonic and cyclic behaviour of fresh water columnar grained S-2 ice , 2000 .

[29]  George Z. Voyiadjis,et al.  A coupled anisotropic damage model for the inelastic response of composite materials , 2000 .

[30]  René de Borst,et al.  A comparison between the Perzyna viscoplastic model and the consistency viscoplastic model , 2002 .

[31]  J. Zhang,et al.  The Compressive Strength of Ice Cubes of Different Sizes , 1993 .

[32]  W. Ehlers,et al.  An anisotropic model of damage for brittle materials with different behavior in tension and compression , 2005 .

[33]  Nirmal K. Sinha Kinetics of Microcracking and Dilatation in Polycrystalline Ice , 1991 .

[34]  D. Edelen A nonlinear onsager theory of irreversibility , 1972 .

[35]  Zdenek P. Bazant,et al.  Geometric damage tensor based on microplane model , 1991 .

[36]  E. Schulson,et al.  Wing cracks and brittle compressive fracture , 1990 .

[37]  E. Schulson,et al.  Brittle Failure of Ice , 2001 .

[38]  N. K. Sinha,et al.  A three dimensional anisotropic constitutive model for ductile behaviour of columnar grained sea ice , 1996 .

[39]  Jacek Skrzypek,et al.  CDM based modelling of damage and fracture mechanisms in concrete under tension and compression , 2004 .

[40]  Lee Davison,et al.  Thermomechanical constitution of spalling elastic bodies , 1973 .

[41]  C. Renshaw,et al.  Universal behaviour in compressive failure of brittle materials , 2001, Nature.

[42]  Zden Ek,et al.  Concrete Fracture Models: Testing and Practice , 2022 .

[43]  A. Jones 10 – Rock Mechanics and Rock Engineering , 1989 .

[44]  Kaspar Willam,et al.  On the consistency of viscoplastic formulations , 2000 .

[45]  Taehyo Park,et al.  Anisotropic Damage Effect Tensors for the Symmetrization of the Effective Stress Tensor , 1997 .

[46]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[47]  Hélène Welemane,et al.  A critical review of some damage models with unilateral effect , 2002 .

[48]  J. Reynouard,et al.  Modeling of structures subjected to impact: concrete behaviour under high strain rate , 2003 .

[49]  David E. Lambert,et al.  Strain rate effects on dynamic fracture and strength , 2000 .

[50]  Sumio Murakami,et al.  Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics , 1997 .

[51]  B. Amadei,et al.  Determination of deformability and tensile strength of anisotropic rock using Brazilian tests , 1998 .

[52]  H. Minamoto,et al.  The Mechanical Behavior Analysis of CFCC with Overall Anisotropic Damage by the Micro-Macro Scale Method , 2003 .

[53]  Bkr Prasad,et al.  Fracture Mechanics of Concrete , 2002 .

[54]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[55]  Matti Ristinmaa,et al.  Consequences of Dynamic Yield Surface in Viscoplasticity , 2000 .

[56]  Zihai Shi NUMERICAL ANALYSIS OF MIXED-MODE FRACTURE IN CONCRETE USING EXTENDED FICTITIOUS CRACK MODEL , 2004 .

[57]  V. Slowik,et al.  RILEM TC QFS ‘quasibrittle fracture scaling and size effect’-final report , 2004 .

[58]  S. Nemat-Nasser,et al.  Energy-release rate and crack kinking in anisotropic brittle solids , 1996 .

[59]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[60]  Jean-Louis Chaboche,et al.  Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage , 1993 .

[61]  D. Halm,et al.  An anisotropic model of damage and frictional sliding for brittle materials , 1998 .

[62]  P. Ván Internal Thermodynamic Variables and Failure of Microcracked Materials , 2001 .

[63]  N. Cristescu,et al.  A new anisotropic failure criterion for transversely isotropic solids , 1998 .

[64]  Vieira Chaves,et al.  A There Dimensional Setting for Strong Discontinuities Modelling in Failure Mechanics , 2003 .

[65]  N. K. Sinha Experiments on Anisotropic and Rate-Sensitive Strain Ratio and Modulus of Columnar-Grained Ice , 1989 .

[66]  Arne Hillerborg,et al.  Analysis of one single crack , 1983 .

[67]  D. Cole Modeling the cyclic loading response of sea ice , 1998 .

[68]  C Vinet,et al.  Micromechanical damage model taking loading-induced anisotropy into account , 1997 .

[69]  B. Kröplin,et al.  Algorithmic implementation of a generalized cohesive crack model , 1999 .

[70]  Luigi Gambarotta,et al.  Friction-damage coupled model for brittle materials , 2004 .

[71]  Frederick A. Leckie,et al.  Tensorial Nature of Damage Measuring Internal Variables , 1981 .

[72]  M. Kachanov,et al.  A microcrack model of rock inelasticity part I: Frictional sliding on microcracks , 1982 .

[73]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[74]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[75]  Egidio Rizzi,et al.  On the formulation of anisotropic elastic degradation.: II. Generalized pseudo-Rankine model for tensile damage , 2001 .

[76]  Jian-Fu Shao,et al.  Modelling of anisotropic damage in brittle rocks under compression dominated stresses , 2002 .

[77]  E. Schulson,et al.  The failure of fresh-water granular ice under multiaxial compressive loading , 1995 .

[78]  E. Schulson,et al.  Brittle failure of columnar saline ice under triaxial compression , 1997 .

[79]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[80]  Thomas Siegmund,et al.  An analysis of crack growth in thin-sheet metal via a cohesive zone model , 2002 .

[81]  D. Gross,et al.  A note on brittle damage description , 1989 .

[82]  Jean-François Dubé,et al.  Rate Dependent Damage Model for Concrete in Dynamics , 1996 .

[83]  A. Alliche,et al.  Damage model for fatigue loading of concrete , 2004 .

[84]  Alfredo Edmundo Huespe,et al.  Computational modeling of cracking of concrete in strong discontinuity settings , 2004 .

[85]  V. Gupta,et al.  A progressive damage model for failure by shear faulting in polycrystalline ice under biaxial compression , 2002 .

[86]  Wilfrid A. Nixon,et al.  The Structure and Tensile Behavior of First-Year Sea Ice and Laboratory-Grown Saline Ice , 1990 .

[87]  Chan Ghee Koh,et al.  Numerical and experimental studies of concrete damage under impact , 2001 .

[88]  Bojan B. Guzina,et al.  Failure Prediction of Smeared-Crack Formulations , 1995 .

[89]  Chun’an Tang,et al.  Modeling of compression-induced splitting failure in heterogeneous brittle porous solids , 2005 .

[90]  J. Betten Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy , 1986 .

[91]  G. Swoboda,et al.  An energy-based damage model of geomaterials—II. Deductionof damage evolution laws , 1999 .

[92]  Alfredo Edmundo Huespe,et al.  Continuum approach to material failure in strong discontinuity settings , 2004 .

[93]  Stanley J. Vitton,et al.  A dynamic damage growth model for uniaxial compressive response of rock aggregates , 2002 .

[94]  Emmanuel M Detournay,et al.  Damage around a cylindrical opening in a brittle rock mass , 2004 .

[95]  Second law of thermodynamics and the failure of rock materials , 2001 .

[96]  J. Blaauwendraad,et al.  Crack Models for Concrete, Discrete or Smeared? Fixed, Multi-Directional or Rotating? , 1989 .

[97]  Chao-Shi Chen,et al.  Measurement of Indirect Tensile Strength of Anisotropic Rocks by the Ring Test , 2001 .

[98]  G. Ravichandran,et al.  Energy-based model of compressive splitting in heterogeneous brittle solids , 1998 .

[99]  Wei Min Wang,et al.  Stationary and Propagative Instabilities in Metals: A Computational Point of View , 1997 .

[100]  Luc Dormieux,et al.  Micromechanical Analysis of Anisotropic Damage in Brittle Materials , 2002 .

[101]  Umberto Perego,et al.  Fracture energy based bi-dissipative damage model for concrete , 2001 .

[102]  E. Papa A unilateral damage model for masonry based on a homogenisation procedure , 1996 .

[103]  B. Cotterell,et al.  The past, present, and future of fracture mechanics , 2002 .

[104]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[105]  H. L. Nard,et al.  Dynamic behaviour of concrete: the structural effects on compressive strength increase , 2000 .

[106]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[107]  Noël Challamel,et al.  Strain-based anisotropic damage modelling and unilateral effects , 2005 .

[108]  G. Swoboda,et al.  An energy-based damage model of geomaterials-I. Formulation and numerical results , 1999 .

[109]  S. Nemat-Nasser,et al.  Brittle failure in compression: splitting faulting and brittle-ductile transition , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[110]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[111]  K. Valanis A theory of damage in brittle materials , 1990 .

[112]  Julio Flórez-López,et al.  Simplified Model of Unilateral Damage for RC Frames , 1995 .

[113]  Guruswami Ravichandran,et al.  Failure mode transition in ceramics under dynamic multiaxial compression , 2000 .

[114]  E. M. Schulso THE FRACTURE OF ICE Ih , 1987 .

[115]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[116]  Wilford F. Weeks,et al.  Profile Properties of Undeformed First-Year Sea Ice , 1988 .

[117]  P. Steif Crack extension under compressive loading , 1984 .

[118]  H. Kuna-Ciskał,et al.  Anisotropic Elastic-Brittle-Damage and Fracture Models Based on Irreversible Thermodynamics , 2003 .

[119]  Horacio Dante Espinosa,et al.  Dynamic failure mechanisms of ceramic bars : Experiments and numerical simulations , 1995 .

[120]  Egidio Rizzi,et al.  On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate , 2001 .

[121]  Matti Ristinmaa,et al.  Viscoplasticity based on an additive split of the conjugated forces , 1998 .

[122]  P. Varsta,et al.  ON THE MECHANICS OF ICE LOAD ON SHIPS IN LEVEL ICE IN THE BALTIC SEA , 1983 .

[123]  F. J. Gómez,et al.  Generalizations and specializations of cohesive crack models , 2003 .