C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts

Objective We sought to characterize C9orf72 expansions in relation to genetic ancestry and age at onset (AAO) and to use these measures to discriminate the behavioral from the language variant syndrome in a large pan-European cohort of frontotemporal lobar degeneration (FTLD) cases. Methods We evaluated expansions frequency in the entire cohort (n = 1,396; behavioral variant frontotemporal dementia [bvFTD] [n = 800], primary progressive aphasia [PPA] [n = 495], and FTLD–motor neuron disease [MND] [n = 101]). We then focused on the bvFTD and PPA cases and tested for association between expansion status, syndromes, genetic ancestry, and AAO applying statistical tests comprising Fisher exact tests, analysis of variance with Tukey post hoc tests, and logistic and nonlinear mixed-effects model regressions. Results We found C9orf72 pathogenic expansions in 4% of all cases (56/1,396). Expansion carriers differently distributed across syndromes: 12/101 FTLD-MND (11.9%), 40/800 bvFTD (5%), and 4/495 PPA (0.8%). While addressing population substructure through principal components analysis (PCA), we defined 2 patients groups with Central/Northern (n = 873) and Southern European (n = 523) ancestry. The proportion of expansion carriers was significantly higher in bvFTD compared to PPA (5% vs 0.8% [p = 2.17 × 10−5; odds ratio (OR) 6.4; confidence interval (CI) 2.31–24.99]), as well as in individuals with Central/Northern European compared to Southern European ancestry (4.4% vs 1.8% [p = 1.1 × 10−2; OR 2.5; CI 1.17–5.99]). Pathogenic expansions and Central/Northern European ancestry independently and inversely correlated with AAO. Our prediction model (based on expansions status, genetic ancestry, and AAO) predicted a diagnosis of bvFTD with 64% accuracy. Conclusions Our results indicate correlation between pathogenic C9orf72 expansions, AAO, PCA-based Central/Northern European ancestry, and a diagnosis of bvFTD, implying complex genetic risk architectures differently underpinning the behavioral and language variant syndromes.

Demis A. Kia | O. Andreassen | B. Miller | J. Grafman | J. Trojanowski | J. Hardy | J. Rowe | M. Grossman | C. van Broeckhoven | V. Novelli | Y. Pijnenburg | C. Cruchaga | S. Rollinson | J. Yokoyama | J. Diehl-Schmid | S. Sorbi | V. Álvarez | B. Nacmias | D. Galimberti | A. Karydas | C. Nilsson | G. Bråthen | S. Sando | E. Scarpini | E. Huey | A. Ruiz | E. Rogaeva | J. Clarimón | A. Lleó | P. Pástor | M. Boada | C. Graff | J. Thompson | A. Richardson | G. Binetti | A. Santillo | C. Cupidi | J. V. van Swieten | B. Borroni | F. Tagliavini | D. Blackburn | R. Sánchez-Valle | A. Padovani | A. Puca | V. Escott-Price | J. V. van Rooij | B. Peterlin | J. Polke | M. Kristiansen | A. Bruni | S. Pickering-Brown | I. Hernández | L. Benussi | R. Ghidoni | I. Rainero | S. Moreno-Grau | T. Cope | M. Kramberger | B. Costa | C. Manzoni | M. Bernal-Quirós | M. Aguilar | I. Álvarez | M. Anfossi | S. Bagnoli | L. Bernardi | Lucy Bowns | Huei-Hsin Chiang | S. Colville | M. E. Conidi | M. D. Di Battista | M. Diez-Fairen | Oriol Dols-Icardo | E. Durante | D. Flisar | F. Frangipane | M. Gallo | M. Gallucci | G. Holloway | I. Illán-Gala | B. Khoshnood | P. Lewis | Gaganjit K. Madhan | R. Maletta | A. Maver | M. Menéndez-González | G. Milan | M. Mol | P. Momeni | C. Morris | Linn Öijerstedt | S. Pal | Yasmin Panchbhaya | I. Piaceri | Antonella Rendina | B. Rogelj | G. Rossi | C. Rossmeier | E. Rubino | Jennifer A Saxon | M. Serpente | N. Smirne | E. Suh | V. V. Van Deerlin | J. van der Zee | A. Veronesi | E. Vitale | M. L. Waldö | C. Woodward | R. Ferrari | O. Dols-Icardo | Beatrice Costa | D. Kia | B. Miller | Eunran Suh | V. V. van Deerlin | Gaganjit K Madhan | B. Miller | H. Chiang | Elisabetta Durante | M. Grossman | J. Hardy | Shuna Colville | Behzad Khoshnood | Jennifer A. Saxon

[1]  J. Hardy,et al.  Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues , 2019, Neurobiology of Aging.

[2]  M. Stamelou,et al.  Frontotemporal dementia spectrum: first genetic screen in a Greek cohort , 2019, Neurobiology of Aging.

[3]  S. Lehéricy,et al.  Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers , 2019, Neurobiology of Aging.

[4]  T. Hortobágyi,et al.  Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion , 2019, Behavioural neurology.

[5]  M. Mesulam,et al.  Genetic screen in a large series of patients with primary progressive aphasia , 2018, Alzheimer's & Dementia.

[6]  Nick C Fox,et al.  A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers , 2018, Brain : a journal of neurology.

[7]  C. van Broeckhoven,et al.  Genotype–phenotype links in frontotemporal lobar degeneration , 2018, Nature Reviews Neurology.

[8]  Sonja W. Scholz,et al.  NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases , 2017, Neurobiology of Aging.

[9]  J. Rowe,et al.  Genetic screening in sporadic ALS and FTD , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[10]  K. Sleegers,et al.  Clinical Evidence of Disease Anticipation in Families Segregating a C9orf72 Repeat Expansion , 2017, JAMA neurology.

[11]  C. Graff,et al.  No common founder for C9orf72 expansion mutation in Sweden , 2017, Journal of Human Genetics.

[12]  T. Hortobágyi,et al.  Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[13]  R. Rademakers,et al.  Genetics of FTLD: overview and what else we can expect from genetic studies , 2016, Journal of neurochemistry.

[14]  C. Broeckhoven,et al.  The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter , 2015, Molecular Psychiatry.

[15]  Tao Huang,et al.  Genetic differences among ethnic groups , 2015, BMC Genomics.

[16]  J. Hodges,et al.  Progression in Behavioral Variant Frontotemporal Dementia: A Longitudinal Study. , 2015, JAMA neurology.

[17]  L. Takada The Genetics of Monogenic Frontotemporal Dementia , 2015, Dementia & neuropsychologia.

[18]  D. Dickson,et al.  Jump from pre-mutation to pathologic expansion in C9orf72. , 2015, American journal of human genetics.

[19]  S. Mead,et al.  Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion , 2015, Neurobiology of Aging.

[20]  G. Forloni,et al.  Erratum: C9ORF72 Hexanucleotide Repeat Number in Frontotemporal Lobar Degeneration: A Genotype-Phenotype Correlation Study (Journal of Alzheimer's Disease 38, 4, 2014, (799-808)) DOI 10.3233/JAD-131028 , 2015 .

[21]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[22]  G. Comi,et al.  Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation , 2013, Biological Psychiatry.

[23]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[24]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[25]  Peter L. Ralph,et al.  The Geography of Recent Genetic Ancestry across Europe , 2012, PLoS biology.

[26]  P. Pietrini,et al.  Screening for C 9 ORF 72 repeat expansion in FTLD , 2013 .

[27]  Pietro Pietrini,et al.  Screening for C9ORF72 repeat expansion in FTLD , 2012, Neurobiology of Aging.

[28]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[29]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[30]  M. Nalls,et al.  The chromosome 9 ALS and FTD locus is probably derived from a single founder , 2012, Neurobiology of Aging.

[31]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[32]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[33]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[34]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[35]  Nick C Fox,et al.  Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[36]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[37]  Thomas J Hudson,et al.  CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. , 2009, American journal of human genetics.

[38]  J R Hodges,et al.  The prevalence of frontotemporal dementia , 2002, Neurology.

[39]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.