C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts
暂无分享,去创建一个
Demis A. Kia | O. Andreassen | B. Miller | J. Grafman | J. Trojanowski | J. Hardy | J. Rowe | M. Grossman | C. van Broeckhoven | V. Novelli | Y. Pijnenburg | C. Cruchaga | S. Rollinson | J. Yokoyama | J. Diehl-Schmid | S. Sorbi | V. Álvarez | B. Nacmias | D. Galimberti | A. Karydas | C. Nilsson | G. Bråthen | S. Sando | E. Scarpini | E. Huey | A. Ruiz | E. Rogaeva | J. Clarimón | A. Lleó | P. Pástor | M. Boada | C. Graff | J. Thompson | A. Richardson | G. Binetti | A. Santillo | C. Cupidi | J. V. van Swieten | B. Borroni | F. Tagliavini | D. Blackburn | R. Sánchez-Valle | A. Padovani | A. Puca | V. Escott-Price | J. V. van Rooij | B. Peterlin | J. Polke | M. Kristiansen | A. Bruni | S. Pickering-Brown | I. Hernández | L. Benussi | R. Ghidoni | I. Rainero | S. Moreno-Grau | T. Cope | M. Kramberger | B. Costa | C. Manzoni | M. Bernal-Quirós | M. Aguilar | I. Álvarez | M. Anfossi | S. Bagnoli | L. Bernardi | Lucy Bowns | Huei-Hsin Chiang | S. Colville | M. E. Conidi | M. D. Di Battista | M. Diez-Fairen | Oriol Dols-Icardo | E. Durante | D. Flisar | F. Frangipane | M. Gallo | M. Gallucci | G. Holloway | I. Illán-Gala | B. Khoshnood | P. Lewis | Gaganjit K. Madhan | R. Maletta | A. Maver | M. Menéndez-González | G. Milan | M. Mol | P. Momeni | C. Morris | Linn Öijerstedt | S. Pal | Yasmin Panchbhaya | I. Piaceri | Antonella Rendina | B. Rogelj | G. Rossi | C. Rossmeier | E. Rubino | Jennifer A Saxon | M. Serpente | N. Smirne | E. Suh | V. V. Van Deerlin | J. van der Zee | A. Veronesi | E. Vitale | M. L. Waldö | C. Woodward | R. Ferrari | O. Dols-Icardo | Beatrice Costa | D. Kia | B. Miller | Eunran Suh | V. V. van Deerlin | Gaganjit K Madhan | B. Miller | H. Chiang | Elisabetta Durante | M. Grossman | J. Hardy | Shuna Colville | Behzad Khoshnood | Jennifer A. Saxon
[1] J. Hardy,et al. Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues , 2019, Neurobiology of Aging.
[2] M. Stamelou,et al. Frontotemporal dementia spectrum: first genetic screen in a Greek cohort , 2019, Neurobiology of Aging.
[3] S. Lehéricy,et al. Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers , 2019, Neurobiology of Aging.
[4] T. Hortobágyi,et al. Molecular Mechanisms of Neurodegeneration Related to C9orf72 Hexanucleotide Repeat Expansion , 2019, Behavioural neurology.
[5] M. Mesulam,et al. Genetic screen in a large series of patients with primary progressive aphasia , 2018, Alzheimer's & Dementia.
[6] Nick C Fox,et al. A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers , 2018, Brain : a journal of neurology.
[7] C. van Broeckhoven,et al. Genotype–phenotype links in frontotemporal lobar degeneration , 2018, Nature Reviews Neurology.
[8] Sonja W. Scholz,et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases , 2017, Neurobiology of Aging.
[9] J. Rowe,et al. Genetic screening in sporadic ALS and FTD , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.
[10] K. Sleegers,et al. Clinical Evidence of Disease Anticipation in Families Segregating a C9orf72 Repeat Expansion , 2017, JAMA neurology.
[11] C. Graff,et al. No common founder for C9orf72 expansion mutation in Sweden , 2017, Journal of Human Genetics.
[12] T. Hortobágyi,et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.
[13] R. Rademakers,et al. Genetics of FTLD: overview and what else we can expect from genetic studies , 2016, Journal of neurochemistry.
[14] C. Broeckhoven,et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter , 2015, Molecular Psychiatry.
[15] Tao Huang,et al. Genetic differences among ethnic groups , 2015, BMC Genomics.
[16] J. Hodges,et al. Progression in Behavioral Variant Frontotemporal Dementia: A Longitudinal Study. , 2015, JAMA neurology.
[17] L. Takada. The Genetics of Monogenic Frontotemporal Dementia , 2015, Dementia & neuropsychologia.
[18] D. Dickson,et al. Jump from pre-mutation to pathologic expansion in C9orf72. , 2015, American journal of human genetics.
[19] S. Mead,et al. Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion , 2015, Neurobiology of Aging.
[20] G. Forloni,et al. Erratum: C9ORF72 Hexanucleotide Repeat Number in Frontotemporal Lobar Degeneration: A Genotype-Phenotype Correlation Study (Journal of Alzheimer's Disease 38, 4, 2014, (799-808)) DOI 10.3233/JAD-131028 , 2015 .
[21] L. Petrucelli,et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.
[22] G. Comi,et al. Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation , 2013, Biological Psychiatry.
[23] Nick C Fox,et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.
[24] F. Jessen,et al. A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.
[25] Peter L. Ralph,et al. The Geography of Recent Genetic Ancestry across Europe , 2012, PLoS biology.
[26] P. Pietrini,et al. Screening for C 9 ORF 72 repeat expansion in FTLD , 2013 .
[27] Pietro Pietrini,et al. Screening for C9ORF72 repeat expansion in FTLD , 2012, Neurobiology of Aging.
[28] Janel O. Johnson,et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.
[29] Y. Pijnenburg,et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.
[30] M. Nalls,et al. The chromosome 9 ALS and FTD locus is probably derived from a single founder , 2012, Neurobiology of Aging.
[31] Bruce L. Miller,et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.
[32] David Heckerman,et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.
[33] Nick C Fox,et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.
[34] B. Miller,et al. Classification of primary progressive aphasia and its variants , 2011, Neurology.
[35] Nick C Fox,et al. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review , 2010, Journal of Neurology, Neurosurgery & Psychiatry.
[36] David Heckerman,et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.
[37] Thomas J Hudson,et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. , 2009, American journal of human genetics.
[38] J R Hodges,et al. The prevalence of frontotemporal dementia , 2002, Neurology.
[39] M. Freedman,et al. Frontotemporal lobar degeneration , 1998, Neurology.