The collocation method based on a generalized inverse multiquadric basis for bound-state problems

Abstract The generalized inverse multiquadric basis function (1 + c 2 || x || 2 ) − β /2 , where c > 0, β > d , and x ∈ ℝ d , is introduced for numerically solving the bound-state Schrodinger equation. Combined with the collocation method, this basis function can yield accurate eigenvalues of highly excited vibrations, as demonstrated by using one- and two-dimensional potentials. In addition, the generalized inverse multiquadric basis function is as flexible and simple as the Gaussian basis. The multiquadric form does not call for semiclassically distributed grid points and specially scaled exponential parameters as required in the latter case to achieve high accuracy.

[1]  Richard A. Friesner,et al.  Solution of the Hartree–Fock equations by a pseudospectral method: Application to diatomic molecules , 1986 .

[2]  R. Saykally,et al.  Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with a split Wigner pseudo spectral approach , 1997 .

[3]  D. Hoffman,et al.  Distributed approximating functional approach to the Fokker-Planck equation: Eigenfunction expansion , 1997 .

[4]  R. Friesner,et al.  Adiabatic pseudospectral calculation of vibrational states of four atom molecules: Application to hydrogen peroxide , 1995 .

[5]  V. Szalay The generalized discrete variable representation. An optimal design , 1996 .

[6]  Gabriel G. Balint-Kurti,et al.  The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions , 1989 .

[7]  J. Hutson Coupled channel methods for solving the bound-state Schrödinger equation , 1994 .

[8]  G. Groenenboom,et al.  Solving the discretized time‐independent Schrödinger equation with the Lanczos procedure , 1990 .

[9]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[10]  P. F. Zou Accurate solution to the time-independent Schrödinger equation using Stirling's interpolation formula , 1994 .

[11]  B. Shore Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential , 1973 .

[12]  Richard A. Friesner,et al.  Solution of the Hartree–Fock equations for polyatomic molecules by a pseudospectral method , 1987 .

[13]  R. Friesner,et al.  Adiabatic pseudospectral methods for multidimensional vibrational potentials , 1993 .

[14]  Huazhou Wei Ghost levels and near-variational forms of the discrete variable representation: Application to H2O , 1997 .

[15]  B. R. Johnson New numerical methods applied to solving the one‐dimensional eigenvalue problem , 1977 .

[16]  R. L. Roy,et al.  The secular equation/perturbation theory method for calculating spectra of van der Waals complexes , 1985 .

[17]  D. Lemoine Discrete cylindrical and spherical Bessel transforms in non-direct product representations , 1994 .

[18]  Wei Zhu,et al.  Orthogonal polynomial expansion of the spectral density operator and the calculation of bound state energies and eigenfunctions , 1994 .

[19]  D. Dunn,et al.  Symmetric matrix methods for Schrodinger eigenvectors , 1990 .

[20]  A. Abrashkevich,et al.  Finite-difference solution of the coupled-channel Schrödinger equation using Richardson extrapolation , 1994 .

[21]  F. Fernández,et al.  Calculation of eigenvalues through recurrence relations , 1986 .

[22]  L. Reichel Numerical methods for analytic continuation and mesh generation , 1986 .

[23]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[24]  W. Johnson,et al.  TOPICAL REVIEW: The use of basis splines in theoretical atomic physics , 1996 .

[25]  Weitao Yang,et al.  The collocation method for bound solutions of the Schrödinger equation , 1988 .

[26]  Heli Chen,et al.  The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions , 1996 .

[27]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[28]  J. Tromp,et al.  Variational discrete variable representation , 1995 .

[29]  E. Castro,et al.  Application of the Hill determinant method to the vibrational motion of diatomic molecules , 1987 .

[30]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[31]  E. Sibert Variational and perturbative descriptions of highly vibrationally excited molecules , 1990 .

[32]  J. Oden,et al.  The Mathematics of Surfaces II , 1988 .

[33]  H. Rabitz,et al.  A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations , 1996 .

[34]  J. Muckerman Some useful discrete variable representations for problems in time-dependent and time-independent quantum mechanics , 1990 .

[35]  H. Rabitz,et al.  A fast algorithm for evaluating multidimensional potential energy surfaces , 1997 .

[36]  Didier Lemoine,et al.  The discrete Bessel transform algorithm , 1994 .

[37]  Seung E. Choi,et al.  Determination of the bound and quasibound states of Ar–HCl van der Waals complex: Discrete variable representation method , 1990 .

[38]  Esa Kauppi,et al.  AB INITIO-DISCRETE VARIABLE REPRESENTATION CALCULATION OF VIBRATIONAL ENERGY LEVELS , 1996 .

[39]  S. Taddei,et al.  Finite Interpolation in Green Function Deterministic Numerical Methods , 1997 .

[40]  G. Wahba Spline models for observational data , 1990 .

[41]  V. Szalay Discrete variable representations of differential operators , 1993 .

[42]  J. Light,et al.  On distributed Gaussian bases for simple model multidimensional vibrational problems , 1986 .

[43]  H. Rabitz,et al.  A global H2O potential energy surface for the reaction O(1D)+H2→OH+H , 1996 .

[44]  Guo-Wei Wei,et al.  Lagrange Distributed Approximating Functionals , 1997 .

[45]  J. Light,et al.  Generalized discrete variable approximation in quantum mechanics , 1985 .

[46]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .