A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems

This paper concerns the problem of robust stabilization of autonomous and non-autonomous fractional-order chaotic systems with uncertain parameters and external noises. We propose a simple efficient fractional integral-type sliding surface with some desired stability properties. We use the fractional version of the Lyapunov theory to derive a robust sliding mode control law. The obtained control law is single input and guarantees the occurrence of the sliding motion in a given finite time. Furthermore, the proposed nonlinear control strategy is able to deal with a large class of uncertain autonomous and non-autonomous fractional-order complex systems. Also, Rigorous mathematical and analytical analyses are provided to prove the correctness and robustness of the introduced approach. At last, two illustrative examples are given to show the applicability and usefulness of the proposed fractional-order variable structure controller.

[1]  A. Matouk Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system , 2009 .

[2]  Zaid Odibat,et al.  Adaptive feedback control and synchronization of non-identical chaotic fractional order systems , 2010 .

[3]  Mohammad Pourmahmood Aghababa,et al.  Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme , 2014, Complex..

[4]  Mohammad Pourmahmood Aghababa,et al.  A fractional-order controller for vibration suppression of uncertain structures. , 2013, ISA transactions.

[5]  I. Podlubny Fractional differential equations , 1998 .

[6]  S. M. Lee,et al.  Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control , 2009 .

[7]  M. P. Aghababa Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique , 2012 .

[8]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[9]  Vahid Badri,et al.  Fractional order control of thermal systems: achievability of frequency-domain requirements , 2015 .

[10]  Mohammad Pourmahmood Aghababa Comments on “Adaptive synchronization of fractional-order chaotic systems via a single driving variable” [Nonlinear Dyn. (2011), doi:10.1007/s11071-011-9944-2] , 2011 .

[11]  Mohammad Pourmahmood Aghababa,et al.  A switching fractional calculus-based controller for normal non-linear dynamical systems , 2014 .

[12]  Longge Zhang,et al.  Robust synchronization of two different uncertain fractional-order chaotic systems via adaptive sliding mode control , 2014 .

[13]  S. M. Lee,et al.  Secure communication based on chaotic synchronization via interval time-varying delay feedback control , 2011 .

[14]  Lu Jun-Guo,et al.  Chaotic dynamics and synchronization of fractional-order Genesio–Tesi systems , 2005 .

[15]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[16]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[17]  Mohammad Pourmahmood Aghababa,et al.  Design of hierarchical terminal sliding mode control scheme for fractional-order systems , 2015 .

[18]  Qigui Yang,et al.  Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci , 2011 .

[19]  Weisheng Chen,et al.  Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems , 2014 .

[20]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[21]  M. P. Aghababa No-chatter variable structure control for fractional nonlinear complex systems , 2013 .

[22]  Pagavathigounder Balasubramaniam,et al.  Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography , 2013, Nonlinear Dynamics.

[23]  Mohammad Pourmahmood Aghababa,et al.  Control of non-linear non-integer-order systems using variable structure control theory , 2014 .

[24]  Mohammad Pourmahmood Aghababa Fractional-Neuro-Optimizer: A Neural-Network-Based Optimization Method , 2013, Neural Processing Letters.

[25]  M. P. Aghababa,et al.  A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs , 2012 .

[26]  Lin Teng,et al.  Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial , 2014, Nonlinear Dynamics.

[27]  M. P. Aghababa Control of Fractional-Order Systems Using Chatter-Free Sliding Mode Approach , 2014 .

[28]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[29]  Corina S. Drapaca,et al.  A nonlinear viscoelastic fractional derivative model of infant hydrocephalus , 2011, Appl. Math. Comput..

[30]  Ivo Petráš,et al.  Chaos in the fractional-order Volta’s system: modeling and simulation , 2009 .

[31]  Xiangjun Wu,et al.  A new chaotic system with fractional order and its projective synchronization , 2010 .

[32]  Mohammad Pourmahmood Aghababa,et al.  Synchronization and stabilization of fractional second-order nonlinear complex systems , 2014, Nonlinear Dynamics.

[33]  M. P. Aghababa,et al.  Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties , 2012 .

[34]  Mohammad Pourmahmood Aghababa,et al.  The rich dynamics of fractional-order gyros applying a fractional controller , 2013, J. Syst. Control. Eng..

[35]  MOHAMMAD POURMAHMOOD AGHABABA,et al.  Fractional modeling and control of a complex nonlinear energy supply-demand system , 2015, Complex..

[36]  Majid Roohi,et al.  ROBUST STABILIZATION OF A CLASS OF THREE-DIMENSIONAL UNCERTAIN FRACTIONAL-ORDER NON-AUTONOMOUS SYSTEMS , 2014 .

[37]  Yanxia Sun,et al.  The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor , 2010 .

[38]  M. P. Aghababa Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory , 2012 .

[39]  Mohammad Pourmahmood Aghababa,et al.  Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems , 2013, Int. J. Control.

[40]  Mehmet Önder Efe,et al.  Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[41]  Sajjad Shoja Majidabad,et al.  Decentralized sliding mode control of fractional-order large-scale nonlinear systems , 2014 .

[42]  Serdar Ethem Hamamci Stabilization using fractional-order PI and PID controllers , 2007 .

[43]  Ali Khaki Sedigh,et al.  Stabilization of fractional order systems using a finite number of state feedback laws , 2011 .

[44]  Andrew Y. T. Leung,et al.  Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method , 2014 .

[45]  Mohammad Pourmahmood Aghababa,et al.  Chaotic behavior in fractional-order horizontal platform systems and its suppression using a fractional finite-time control strategy , 2014 .