Comprehension of Simple Quantifiers: Empirical Evaluation of a Computational Model

We examine the verification of simple quantifiers in natural language from a computational model perspective. We refer to previous neuropsychological investigations of the same problem and suggest extending their experimental setting. Moreover, we give some direct empirical evidence linking computational complexity predictions with cognitive reality. In the empirical study we compare time needed for understanding different types of quantifiers. We show that the computational distinction between quantifiers recognized by finite-automata and push-down automata is psychologically relevant. Our research improves upon, the hypotheses and explanatory power of recent neuroimaging studies as well as provides evidence for the claim that human linguistic abilities are constrained by computational complexity.

[1]  Bart Geurts,et al.  Monotonicity and Processing Load , 2005, J. Semant..

[2]  Merlijn Sevenster,et al.  Branches of imperfect information : logic, games, and computation , 2002 .

[3]  Robin Clark,et al.  Neural basis for generalized quantifier comprehension , 2005, Neuropsychologia.

[4]  Robin Clark,et al.  Number sense and quantifier interpretation , 2007 .

[5]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[6]  Marcin Mostowski,et al.  Computational semantics for monadic quantifiers , 1998, J. Appl. Non Class. Logics.

[7]  Marcin Mostowski,et al.  Computational complexity of the semantics of some natural language constructions , 2004, Ann. Pure Appl. Log..

[8]  Ron Sun,et al.  The Cambridge Handbook of Computational Psychology , 2008 .

[9]  David J. Chalmers,et al.  A Computational Foundation for the Study of Cognition , 2011 .

[10]  Jacques Lefort Godel, Escher, Bach , 1986 .

[11]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[12]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[13]  Christopher Cherniak,et al.  Minimal Rationality , 1986, Computational models of cognition and perception.

[14]  Nina Gierasimczuk,et al.  The Problem of Learning the Semantics of Quantifiers , 2007, TbiLLC.

[15]  G. Miller,et al.  Cognitive science. , 1981, Science.

[16]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[17]  G. Frege Über Sinn und Bedeutung , 1892 .

[18]  Robin Clark,et al.  Quantifier comprehension in corticobasal degeneration , 2006, Brain and Cognition.

[19]  H. Levesque Logic and the complexity of reasoning , 1988 .

[20]  P. Blackburn,et al.  Book Reviews: The Proper Treatment of Events, by Michiel van Lambalgen and Fritz Hamm , 2005, CL.

[21]  Daniela Isac,et al.  I-Language: An Introduction to Linguistics as Cognitive Science , 2008 .

[22]  Robin Clark,et al.  Is it logical to count on quantifiers? Dissociable neural networks underlying numerical and logical quantifiers , 2009, Neuropsychologia.

[23]  D. Hofstadter Gödel, Escher, Bach , 1979 .

[24]  Anthony J. Sanford,et al.  Psychological Studies of Quantifiers , 1994, J. Semant..

[25]  Jakub Szymanik,et al.  Strong Meaning Hypothesis from a Computational Perspective , 2007 .

[26]  Iris van Rooij,et al.  The Tractable Cognition Thesis , 2008, Cogn. Sci..

[27]  Jakub Szymanik,et al.  A comment on a neuroimaging study of natural language quantifier comprehension , 2007, Neuropsychologia.

[28]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[29]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[30]  J. Benthem Essays in Logical Semantics , 1986 .

[31]  Johan van Benthem,et al.  Towards a Computational Semantics , 1987 .

[32]  Jakub Szymanik,et al.  Quantifiers in TIME and SPACE : computational complexity of generalized quantifiers in natural language , 2009 .

[33]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[34]  Marcello Frixione,et al.  Tractable Competence , 2001, Minds and Machines.

[35]  A. Baddeley Working Memory, Thought, and Action , 2007 .