Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space
暂无分享,去创建一个
[1] Tony Lindeberg,et al. Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[2] E. Davies,et al. SEMIGROUPS OF LINEAR OPERATORS AND APPLICATIONS (Oxford Mathematical Monographs) , 1986 .
[3] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[4] Luc Florack,et al. On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.
[5] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[6] Ivan Laptev,et al. Galilean-diagonalized spatio-temporal interest operators , 2004, ICPR 2004.
[7] J. J. Koenderink,et al. Scale-time , 1988, Biological Cybernetics.
[8] P. J. Burt,et al. Fast Filter Transforms for Image Processing , 1981 .
[9] Hailiang Zhang,et al. Maximum principles and bounds in a class of fourth-order uniformly elliptic equations , 2002 .
[10] Barbara Caputo,et al. Local velocity-adapted motion events for spatio-temporal recognition , 2007, Comput. Vis. Image Underst..
[11] Ivan Laptev,et al. Velocity adaptation of spatio-temporal receptive fields for direct recognition of activities: an experimental study , 2004, Image Vis. Comput..
[12] Daniel Fagerström,et al. Temporal Scale Spaces , 2003, International Journal of Computer Vision.
[13] Tony Lindeberg,et al. Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.
[14] Tony Lindeberg,et al. Shape-Adapted Smoothing in Estimation of 3-D Depth Cues from Affine Distortions of Local 2-D Brightness Structure , 1994, ECCV.
[15] J. Crowley. A representation for visual information , 1981 .
[16] Daniel Fagerström,et al. Spatio-temporal Scale-Spaces , 2007, SSVM.
[17] I. J. Schoenberg. On Pólya frequency functions. II: Variation-diminishing integral operators of the convolution type , 1988 .
[18] Tony Lindeberg,et al. Time-Recursive Velocity-Adapted Spatio-Temporal Scale-Space Filters , 2002, ECCV.
[19] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[20] Philip Broadbridge,et al. Entropy Diagnostics for Fourth Order Partial Differential Equations in Conservation Form , 2008, Entropy.
[21] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[22] Lewis D. Griffin. Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.
[23] Bart M. ter Haar Romeny,et al. Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.
[24] Luc Van Gool,et al. An Extended Class of Scale-Invariant and Recursive Scale Space Filters , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[25] T. Lindeberg,et al. Velocity-adapted spatio-temporal receptive fields for direct recognition of activities , 2002 .
[26] Luc Florack,et al. The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.
[27] G. Folland,et al. The uncertainty principle: A mathematical survey , 1997 .
[28] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[29] R A Young,et al. The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.
[30] T.,et al. Shiftable Multi-scale TransformsEero , 1992 .
[31] Sh. Al-Sharif,et al. On the generator of two parameter semigroups , 2004, Appl. Math. Comput..
[32] Luc Florack,et al. Image Structure , 1997, Computational Imaging and Vision.
[33] Takeo Kanade,et al. An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.
[34] Russell L. De Valois,et al. PII: S0042-6989(00)00210-8 , 2000 .
[35] J. Goldstein. Semigroups of Linear Operators and Applications , 1985 .
[36] Robert Hummel,et al. Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..
[37] I. J. Schoenberg. On smoothing operations and their generating functions , 1953 .
[38] J. C. Jaeger,et al. Conduction of Heat in Solids , 1952 .
[39] G. Folland. Introduction to Partial Differential Equations , 1976 .
[40] Atsushi Imiya,et al. Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.
[41] Luc Florack,et al. Scale-Time Kernels and Models , 2001, Scale-Space.
[42] I. Ohzawa,et al. Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.
[43] J. Crowley. A representation for visual information with application to machine vision , 1982 .
[44] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[45] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[46] R. Young. GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .
[47] Tony Lindeberg,et al. Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..
[48] Manuel González,et al. Affine Invariant Texture Segmentation and Shape from Texture by Variational Methods , 1998, Journal of Mathematical Imaging and Vision.
[49] Frédéric Guichard,et al. A morphological, affine, and Galilean invariant scale-space for movies , 1998, IEEE Trans. Image Process..
[50] Adam Baumberg,et al. Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[51] Max A. Viergever,et al. Scale and the differential structure of images , 1992, Image Vis. Comput..
[52] Ronald M. Lesperance,et al. The Gaussian derivative model for spatial-temporal vision: II. Cortical data. , 2001, Spatial vision.
[53] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[54] Keith Langley,et al. Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[55] Tony Lindeberg,et al. Linear Spatio-Temporal Scale-Space , 1997, Scale-Space.
[56] Tony Lindeberg,et al. Scale-Space with Casual Time Direction , 1996, ECCV.
[57] E. Hille. Functional Analysis And Semi-Groups , 1948 .
[58] M. Felsberg,et al. α Scale Spaces on a Bounded Domain , 2003 .
[59] Edward H. Adelson,et al. Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.
[60] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[61] D. R Dunninger,et al. Maximum principles for solutions of some fourth-order elliptic equations , 1972 .
[62] Tony Lindeberg,et al. On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.
[63] T. Lindeberg,et al. Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .
[64] Tony Lindeberg,et al. On Automatic Selection of Temporal Scales in Time-Causal Scale-Space , 1997, AFPAC.
[65] T. Lindeberg,et al. Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure , 1997 .
[66] P. Burt. Fast filter transform for image processing , 1981 .
[67] I. J. Schoenberg. On Pólya Frequency Functions , 1988 .
[68] Tony Lindeberg,et al. Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection , 2000, IEEE Trans. Image Process..
[69] T. Lindeberg. Scale-space with Causal Time Direction , 1996 .
[70] J. Koenderink,et al. Receptive field families , 1990, Biological Cybernetics.
[71] T. Lindeberg,et al. Galilean-corrected spatio-temporal interest operators , 2004 .
[72] Andrew Zisserman,et al. Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[73] Edward H. Adelson,et al. The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[74] Tony Lindeberg,et al. Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.
[75] Ronald M. Lesperance,et al. The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.
[76] Peter Johansen,et al. Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.
[77] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[78] Pietro Perona. Steerable-scalable kernels for edge detection and junction analysis , 1992, Image Vis. Comput..
[79] Tony Lindeberg,et al. Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.
[80] Andrea J. van Doorn,et al. Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[81] Hans-Hellmut Nagel,et al. Spatiotemporally Adaptive Estimation and Segmenation of OF-Fields , 1998, ECCV.
[82] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[83] L. Evans,et al. Partial Differential Equations , 1941 .
[84] Michael Felsberg,et al. The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.