Generalized Gaussian Scale-Space Axiomatics Comprising Linear Scale-Space, Affine Scale-Space and Spatio-Temporal Scale-Space

This paper describes a generalized axiomatic scale-space theory that makes it possible to derive the notions of linear scale-space, affine Gaussian scale-space and linear spatio-temporal scale-space using a similar set of assumptions (scale-space axioms).The notion of non-enhancement of local extrema is generalized from previous application over discrete and rotationally symmetric kernels to continuous and more general non-isotropic kernels over both spatial and spatio-temporal image domains. It is shown how a complete classification can be given of the linear (Gaussian) scale-space concepts that satisfy these conditions on isotropic spatial, non-isotropic spatial and spatio-temporal domains, which results in a general taxonomy of Gaussian scale-spaces for continuous image data. The resulting theory allows filter shapes to be tuned from specific context information and provides a theoretical foundation for the recently exploited mechanisms of shape adaptation and velocity adaptation, with highly useful applications in computer vision.It is also shown how time-causal spatio-temporal scale-spaces can be derived from similar assumptions. The mathematical structure of these scale-spaces is analyzed in detail concerning transformation properties over space and time, the temporal cascade structure they satisfy over time as well as properties of the resulting multi-scale spatio-temporal derivative operators. It is also shown how temporal derivatives with respect to transformed time can be defined, leading to the formulation of a novel analogue of scale normalized derivatives for time-causal scale-spaces.The kernels generated from these two types of theories have interesting relations to biological vision. We show how filter kernels generated from the Gaussian spatio-temporal scale-space as well as the time-causal spatio-temporal scale-space relate to spatio-temporal receptive field profiles registered from mammalian vision. Specifically, we show that there are close analogies to space-time separable cells in the LGN as well as to both space-time separable and non-separable cells in the striate cortex. We do also present a set of plausible models for complex cells using extended quasi-quadrature measures expressed in terms of scale normalized spatio-temporal derivatives.The theories presented as well as their relations to biological vision show that it is possible to describe a general set of Gaussian and/or time-causal scale-spaces using a unified framework, which generalizes and complements previously presented scale-space formulations in this area.

[1]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  E. Davies,et al.  SEMIGROUPS OF LINEAR OPERATORS AND APPLICATIONS (Oxford Mathematical Monographs) , 1986 .

[3]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[4]  Luc Florack,et al.  On the Axioms of Scale Space Theory , 2004, Journal of Mathematical Imaging and Vision.

[5]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[6]  Ivan Laptev,et al.  Galilean-diagonalized spatio-temporal interest operators , 2004, ICPR 2004.

[7]  J. J. Koenderink,et al.  Scale-time , 1988, Biological Cybernetics.

[8]  P. J. Burt,et al.  Fast Filter Transforms for Image Processing , 1981 .

[9]  Hailiang Zhang,et al.  Maximum principles and bounds in a class of fourth-order uniformly elliptic equations , 2002 .

[10]  Barbara Caputo,et al.  Local velocity-adapted motion events for spatio-temporal recognition , 2007, Comput. Vis. Image Underst..

[11]  Ivan Laptev,et al.  Velocity adaptation of spatio-temporal receptive fields for direct recognition of activities: an experimental study , 2004, Image Vis. Comput..

[12]  Daniel Fagerström,et al.  Temporal Scale Spaces , 2003, International Journal of Computer Vision.

[13]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[14]  Tony Lindeberg,et al.  Shape-Adapted Smoothing in Estimation of 3-D Depth Cues from Affine Distortions of Local 2-D Brightness Structure , 1994, ECCV.

[15]  J. Crowley A representation for visual information , 1981 .

[16]  Daniel Fagerström,et al.  Spatio-temporal Scale-Spaces , 2007, SSVM.

[17]  I. J. Schoenberg On Pólya frequency functions. II: Variation-diminishing integral operators of the convolution type , 1988 .

[18]  Tony Lindeberg,et al.  Time-Recursive Velocity-Adapted Spatio-Temporal Scale-Space Filters , 2002, ECCV.

[19]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[20]  Philip Broadbridge,et al.  Entropy Diagnostics for Fourth Order Partial Differential Equations in Conservation Form , 2008, Entropy.

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  Lewis D. Griffin Critical Point Events in Affine Scale-Space , 1997, Gaussian Scale-Space Theory.

[23]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[24]  Luc Van Gool,et al.  An Extended Class of Scale-Invariant and Recursive Scale Space Filters , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  T. Lindeberg,et al.  Velocity-adapted spatio-temporal receptive fields for direct recognition of activities , 2002 .

[26]  Luc Florack,et al.  The Intrinsic Structure of Optic Flow Incorporating Measurement Duality , 1998, International Journal of Computer Vision.

[27]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[28]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[30]  T.,et al.  Shiftable Multi-scale TransformsEero , 1992 .

[31]  Sh. Al-Sharif,et al.  On the generator of two parameter semigroups , 2004, Appl. Math. Comput..

[32]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[33]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[34]  Russell L. De Valois,et al.  PII: S0042-6989(00)00210-8 , 2000 .

[35]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[36]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[37]  I. J. Schoenberg On smoothing operations and their generating functions , 1953 .

[38]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[39]  G. Folland Introduction to Partial Differential Equations , 1976 .

[40]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[41]  Luc Florack,et al.  Scale-Time Kernels and Models , 2001, Scale-Space.

[42]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[43]  J. Crowley A representation for visual information with application to machine vision , 1982 .

[44]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[45]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[46]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[47]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[48]  Manuel González,et al.  Affine Invariant Texture Segmentation and Shape from Texture by Variational Methods , 1998, Journal of Mathematical Imaging and Vision.

[49]  Frédéric Guichard,et al.  A morphological, affine, and Galilean invariant scale-space for movies , 1998, IEEE Trans. Image Process..

[50]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[51]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[52]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: II. Cortical data. , 2001, Spatial vision.

[53]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[54]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Tony Lindeberg,et al.  Linear Spatio-Temporal Scale-Space , 1997, Scale-Space.

[56]  Tony Lindeberg,et al.  Scale-Space with Casual Time Direction , 1996, ECCV.

[57]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[58]  M. Felsberg,et al.  α Scale Spaces on a Bounded Domain , 2003 .

[59]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[60]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[61]  D. R Dunninger,et al.  Maximum principles for solutions of some fourth-order elliptic equations , 1972 .

[62]  Tony Lindeberg,et al.  On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.

[63]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[64]  Tony Lindeberg,et al.  On Automatic Selection of Temporal Scales in Time-Causal Scale-Space , 1997, AFPAC.

[65]  T. Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure , 1997 .

[66]  P. Burt Fast filter transform for image processing , 1981 .

[67]  I. J. Schoenberg On Pólya Frequency Functions , 1988 .

[68]  Tony Lindeberg,et al.  Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection , 2000, IEEE Trans. Image Process..

[69]  T. Lindeberg Scale-space with Causal Time Direction , 1996 .

[70]  J. Koenderink,et al.  Receptive field families , 1990, Biological Cybernetics.

[71]  T. Lindeberg,et al.  Galilean-corrected spatio-temporal interest operators , 2004 .

[72]  Andrew Zisserman,et al.  Viewpoint invariant texture matching and wide baseline stereo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[73]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[75]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.

[76]  Peter Johansen,et al.  Gaussian Scale-Space Theory , 1997, Computational Imaging and Vision.

[77]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Pietro Perona Steerable-scalable kernels for edge detection and junction analysis , 1992, Image Vis. Comput..

[79]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[80]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[81]  Hans-Hellmut Nagel,et al.  Spatiotemporally Adaptive Estimation and Segmenation of OF-Fields , 1998, ECCV.

[82]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[83]  L. Evans,et al.  Partial Differential Equations , 1941 .

[84]  Michael Felsberg,et al.  The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.