Eigenclassifiers for combining correlated classifiers

[1]  Ethem Alpaydin,et al.  Incremental construction of classifier and discriminant ensembles , 2009, Inf. Sci..

[2]  Christino Tamon,et al.  On the Boosting Pruning Problem , 2000, ECML.

[3]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[4]  I. Jolliffe Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .

[5]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[6]  Stephen D. Bay Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets , 1998, ICML.

[7]  A. C. Rencher Interpretation of Canonical Discriminant Functions, Canonical Variates, and Principal Components , 1992 .

[8]  Cigdem Demir,et al.  Cost-conscious classifier ensembles , 2005, Pattern Recognit. Lett..

[9]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[10]  Fabio Roli,et al.  A theoretical and experimental analysis of linear combiners for multiple classifier systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[12]  Noel E. Sharkey,et al.  The "Test and Select" Approach to Ensemble Combination , 2000, Multiple Classifier Systems.

[13]  Ethem Alpaydın,et al.  Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999, Neural Comput..

[14]  Bogdan Gabrys,et al.  Classifier selection for majority voting , 2005, Inf. Fusion.

[15]  William Nick Street,et al.  Ensemble Pruning Via Semi-definite Programming , 2006, J. Mach. Learn. Res..

[16]  P. N. Suganthan,et al.  Ensemble of niching algorithms , 2010, Inf. Sci..

[17]  Michael J. Pazzani,et al.  A Principal Components Approach to Combining Regression Estimates , 1999, Machine Learning.

[18]  Ethem Alpaydin,et al.  Linear Discriminant Trees , 2000, ICML.

[19]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[20]  Xi-Zhao Wang,et al.  Improving Generalization of Fuzzy IF--THEN Rules by Maximizing Fuzzy Entropy , 2009, IEEE Transactions on Fuzzy Systems.

[21]  Ian H. Witten,et al.  Issues in Stacked Generalization , 2011, J. Artif. Intell. Res..

[22]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[23]  Ethem Alpaydin,et al.  Combining multiple representations and classifiers for pen-based handwritten digit recognition , 1997, Proceedings of the Fourth International Conference on Document Analysis and Recognition.

[24]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[25]  William B. Yates,et al.  Engineering Multiversion Neural-Net Systems , 1996, Neural Computation.

[26]  Christopher J. Merz,et al.  Using Correspondence Analysis to Combine Classifiers , 1999, Machine Learning.

[27]  Rich Caruana,et al.  Ensemble selection from libraries of models , 2004, ICML.

[28]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[29]  Xiaoyi Jiang,et al.  A dynamic classifier ensemble selection approach for noise data , 2010, Inf. Sci..

[30]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[31]  Rui Xia,et al.  Ensemble of feature sets and classification algorithms for sentiment classification , 2011, Inf. Sci..

[32]  Fabio Roli,et al.  Methods for Designing Multiple Classifier Systems , 2001, Multiple Classifier Systems.

[33]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[34]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[35]  Cheng-Lin Liu,et al.  Classifier combination based on confidence transformation , 2005, Pattern Recognit..

[36]  Ethem Alpaydin,et al.  Voting over Multiple Condensed Nearest Neighbors , 1997, Artificial Intelligence Review.

[37]  Thomas G. Dietterich,et al.  Pruning Adaptive Boosting , 1997, ICML.

[38]  Li-Juan Wang,et al.  An improved multiple fuzzy NNC system based on mutual information and fuzzy integral , 2011, Int. J. Mach. Learn. Cybern..

[39]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Sarunas Raudys,et al.  Trainable fusion rules. I. Large sample size case , 2006, Neural Networks.

[41]  Geoffrey I. Webb,et al.  To Select or To Weigh: A Comparative Study of Linear Combination Schemes for SuperParent-One-Dependence Estimators , 2007, IEEE Transactions on Knowledge and Data Engineering.

[42]  Xizhao Wang,et al.  Induction of multiple fuzzy decision trees based on rough set technique , 2008, Inf. Sci..

[43]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[44]  J. Neyman,et al.  Interpretation of Canonical Discriminant Functions, Canonical Variates, and Principal Components , 1992 .

[45]  Ludmila I. Kuncheva Diversity in multiple classifier systems , 2005, Inf. Fusion.

[46]  L. Kuncheva,et al.  Combining classifiers: Soft computing solutions. , 2001 .

[47]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[48]  Sankar K. Pal,et al.  Pattern Recognition: From Classical to Modern Approaches , 2001 .

[49]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[50]  Mehmet Aydin Ula INCREMENTAL CONSTRUCTION OF COST-CONSCIOUS ENSEMBLES USING MULTIPLE LEARNERS AND REPRESENTATIONS IN MACHINE LEARNING , 2009 .

[51]  Kagan Tumer,et al.  Error Correlation and Error Reduction in Ensemble Classifiers , 1996, Connect. Sci..

[52]  Dong Ling Tong,et al.  Genetic Algorithm-Neural Network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection , 2010, Int. J. Mach. Learn. Cybern..

[53]  Robert A. Jacobs,et al.  Bias/Variance Analyses of Mixtures-of-Experts Architectures , 1997, Neural Computation.

[54]  Robert P. W. Duin,et al.  Is independence good for combining classifiers? , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[55]  Fabio Roli,et al.  Multiple classifier systems for robust classifier design in adversarial environments , 2010, Int. J. Mach. Learn. Cybern..