Parameter-dependent robust H∞ filter design for uncertain discrete-time systems with quantized measurements

This paper deals with the problem of parameter-dependent robust H∞ filter design for uncertain discrete-time systems with output quantization. The uncertain parameters are supposed to reside in a polytope. The system outputs are quantized by a memoryless logarithmic quantizer before being transmitted to a filter. Attention is focused on the design of a robust H∞ filter to mitigate quantization effects and ensure a prescribed H∞ noise attenuation level. Via introducing some slack variables and using the parameter-dependent Lyapunov function, sufficient conditions for the existence of a robust H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.

[1]  Shengyuan Xu,et al.  Robust H∞ control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers , 2004, Syst. Control. Lett..

[2]  Shengyuan Xu Robust H/sub /spl infin// filtering for a class of discrete-time uncertain nonlinear systems with state delay , 2002 .

[3]  James Lam,et al.  On the absolute stability approach to quantized feedback control , 2010, Autom..

[4]  Jeffrey K. Hollingsworth,et al.  Instrumentation and Measurement , 1998, 2022 International Symposium on Electronics and Telecommunications (ISETC).

[5]  Alexandre Trofino,et al.  Mode-Independent ${\cal H}_{\infty}$ Filters for Markovian Jump Linear Systems , 2006, IEEE Transactions on Automatic Control.

[6]  B. Widrow,et al.  Statistical theory of quantization , 1996 .

[7]  Xiao‐Heng Chang,et al.  Robust H-infinity filtering for uncertain discrete-time systems using parameter-dependent Lyapunov functions , 2013 .

[8]  P. Khargonekar,et al.  Filtering and smoothing in an H/sup infinity / setting , 1991 .

[9]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[10]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[11]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[12]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[13]  Zhong-Ping Jiang,et al.  A sector bound approach to feedback control of nonlinear systems with state quantization , 2012, Autom..

[14]  Lihua Xie,et al.  Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization , 2011, Autom..

[15]  Yuanqing Xia,et al.  New LMI Approach to Fuzzy $H_{\infty}$ Filter Designs , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Thierry-Marie Guerra,et al.  Continuous Takagi–Sugeno's Models: Reduction of the Number of LMI Conditions in Various Fuzzy Control Design Technics , 2007, IEEE Transactions on Fuzzy Systems.

[17]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[18]  Sandro Zampieri,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2003, IEEE Trans. Autom. Control..

[19]  David Zhang,et al.  Improved robust H2 and Hinfinity filtering for uncertain discrete-time systems , 2004, Autom..

[20]  K. Hu,et al.  Improved robust H8 filtering for uncertain discrete-time switched systems , 2009 .

[21]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Huijun Gao,et al.  A new approach to quantized feedback control systems , 2008, Autom..

[23]  Pramod P. Khargonekar,et al.  FILTERING AND SMOOTHING IN AN H" SETTING , 1991 .

[24]  P. Peres,et al.  LMI approach to the mixed H/sub 2//H/sub /spl infin// filtering design for discrete-time uncertain systems , 2001 .