Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator.

We report mid-infrared spectroscopy measurements of ultrathin, electrostatically gated (Bi1-xSbx)2Te3 topological insulator films in which we observe several percent modulation of transmittance and reflectance as gating shifts the Fermi level. Infrared transmittance measurements of gated films were enabled by use of an epitaxial lift-off method for large-area transfer of topological insulator films from infrared-absorbing SrTiO3 growth substrates to thermal oxidized silicon substrates. We combine these optical experiments with transport measurements and angle-resolved photoemission spectroscopy to identify the observed spectral modulation as a gate-driven transfer of spectral weight between both bulk and 2D topological surface channels and interband and intraband channels. We develop a model for the complex permittivity of gated (Bi1-xSbx)2Te3 and find a good match to our experimental data. These results open the path for layered topological insulator materials as a new candidate for tunable, ultrathin infrared optics and highlight the possibility of switching topological optoelectronic phenomena between bulk and spin-polarized surface regimes.

[1]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[2]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[3]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[4]  A. Helmy,et al.  Multilayer Black Phosphorus as a Versatile Mid-Infrared Electro-optic Material. , 2015, Nano letters.

[5]  D. Basov,et al.  Topological insulators are tunable waveguides for hyperbolic polaritons , 2015, 1509.02642.

[6]  M. Rudner,et al.  Chiral plasmons without magnetic field , 2015, Proceedings of the National Academy of Sciences.

[7]  Kazuhiko Matsumoto,et al.  Dual-gated topological insulator thin-film device for efficient Fermi-level tuning. , 2015, ACS nano.

[8]  J. S. Lee,et al.  Sum-rule constraints on the surface state conductance of topological insulators. , 2015, Physical review letters.

[9]  H. Ebert,et al.  Connection of a topological surface state with the bulk continuum in Sb(2)Te(3)(0001). , 2015, Physical review letters.

[10]  R. Ashoori,et al.  Electrostatic coupling between two surfaces of a topological insulator nanodevice. , 2014, Physical review letters.

[11]  N. Bansal,et al.  Transport properties of topological insulators: Band bending, bulk metal-to-insulator transition, and weak anti-localization , 2014, 1408.1614.

[12]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[13]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[14]  G. Refael,et al.  Lighting up topological insulators: large surface photocurrents from magnetic superlattices , 2014, 1403.0010.

[15]  S. Cheong,et al.  Optical evidence of surface state suppression in Bi-based topological insulators , 2014, 1404.0689.

[16]  Y. Park,et al.  Transferring MBE-grown topological insulator films to arbitrary substrates and metal-insulator transition via Dirac gap. , 2014, Nano letters.

[17]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[18]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[19]  P. Calvani,et al.  Observation of Dirac plasmons in a topological insulator. , 2013, Nature nanotechnology.

[20]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[21]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[22]  J. P. Carbotte,et al.  Hexagonal warping on optical conductivity of surface states in topological insulator Bi2Te3 , 2013, 1304.2218.

[23]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[24]  H. Drew,et al.  Dirac cone shift of a passivated topological Bi2Se3 interface state , 2012, 1208.3881.

[25]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[26]  D. Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[27]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[28]  P. Jarillo-Herrero,et al.  Control over topological insulator photocurrents with light polarization. , 2011, Nature nanotechnology.

[29]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[30]  Xiao-ling Fang,et al.  Triolein-based polycation lipid nanocarrier for efficient gene delivery: characteristics and mechanism , 2011, International journal of nanomedicine.

[31]  Q. Xue,et al.  Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators. , 2011, Nature communications.

[32]  A. Markelz,et al.  Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. , 2011, Physical review letters.

[33]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[34]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[35]  H. Drew,et al.  Terahertz Kerr and reflectivity measurements on the topological insulator Bi 2 Se 3 , 2010, 1007.4482.

[36]  X. Dai,et al.  First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3 , 2010, 1003.5082.

[37]  J Chen,et al.  Gate-voltage control of chemical potential and weak antilocalization in Bi₂Se₃. , 2010, Physical review letters.

[38]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[39]  X. Qi,et al.  Collective modes of a helical liquid. , 2009, Physical review letters.

[40]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[41]  L. Falkovsky,et al.  Optical properties of graphene , 2008, 0806.3663.

[42]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[43]  D. Lynch The Infrared Spectral Signature of Water Ice in the Vacuum Cryogenic AI&T Environment , 2005 .

[44]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[45]  G. A. Thomas,et al.  Metal-insulator transition in a doped semiconductor , 1983 .

[46]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[47]  O. Beckman,et al.  Doping properties of Sb2Te3 indicating a two valence band model , 1965 .

[48]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[49]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[50]  Zuocheng Zhang,et al.  Band structure engineering in (Bi1xSbx)2Te3 ternary topological insulators , 2011 .

[51]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[52]  R. C. Thompson,et al.  Optical Waves in Layered Media , 1990 .