Importance nested sampling with normalising flows

We present an improved version of the nested sampling algorithm nessai in which the core algorithm is modified to use importance weights. In the modified algorithm, samples are drawn from a mixture of normalising flows and the requirement for samples to be independently and identically distributed (i.i.d.) according to the prior is relaxed. Furthermore, it allows for samples to be added in any order, independently of a likelihood constraint, and for the evidence to be updated with batches of samples. We call the modified algorithm i-nessai. We first validate i-nessai using analytic likelihoods with known Bayesian evidences and show that the evidence estimates are unbiased in up to 32 dimensions. We compare i-nessai to standard nessai for the analytic likelihoods and the Rosenbrock likelihood, the results show that i-nessai is consistent with nessai whilst producing more precise evidence estimates. We then test i-nessai on 64 simulated gravitational-wave signals from binary black hole coalescence and show that it produces unbiased estimates of the parameters. We compare our results to those obtained using standard nessai and dynesty and find that i-nessai requires 2.68 and 13.3 times fewer likelihood evaluations to converge, respectively. We also test i-nessai of an 80 s simulated binary neutron star signal using a reduced-order-quadrature basis and find that, on average, it converges in 24 min, whilst only requiring 1.01×106 likelihood evaluations compared to 1.42×106 for nessai and 4.30×107 for dynesty. These results demonstrate that i-nessai is consistent with nessai and dynesty whilst also being more efficient.

[1]  J. Peacock,et al.  Accelerating astronomical and cosmological inference with preconditioned Monte Carlo , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  P. K. Panda,et al.  GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run , 2021, 2111.03606.

[3]  Stephen R. Green,et al.  Real-time gravitational-wave science with neural posterior estimation , 2021, Physical review letters.

[4]  Hao Wu,et al.  Nested Variational Inference , 2021, NeurIPS.

[5]  G. Ashton,et al.  Bilby-MCMC: An MCMC sampler for gravitational-wave inference , 2021, Monthly Notices of the Royal Astronomical Society.

[6]  Johann Brehmer,et al.  Simulation-based inference in particle physics , 2021, Nature Reviews Physics.

[7]  Will Handley,et al.  Nested sampling with any prior you like , 2021, 2102.12478.

[8]  C. Messenger,et al.  Nested sampling with normalizing flows for gravitational-wave inference , 2021, Physical Review D.

[9]  Arnaud Doucet,et al.  Annealed Flow Transport Monte Carlo , 2021, ICML.

[10]  J. Buchner Nested sampling methods , 2021, Statistics Surveys.

[11]  J. Buchner UltraNest - a robust, general purpose Bayesian inference engine , 2021, J. Open Source Softw..

[12]  G. Papamakarios,et al.  nflows: normalizing flows in PyTorch , 2020 .

[13]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living Reviews in Relativity.

[14]  H.Zhang,et al.  Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer , 2020, Progress of Theoretical and Experimental Physics.

[15]  N. Jeffrey,et al.  Likelihood-free inference with neural compression of DES SV weak lensing map statistics , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  G. Ashton,et al.  Massively parallel Bayesian inference for transient gravitational-wave astronomy , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  Will Handley,et al.  Nested sampling cross-checks using order statistics , 2020, 2006.03371.

[18]  M. J. Williams,et al.  Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Stephen R. Green,et al.  Gravitational-wave parameter estimation with autoregressive neural network flows , 2020, Physical Review D.

[21]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[22]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[23]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2019, Proceedings of the National Academy of Sciences.

[24]  Roderick Murray-Smith,et al.  Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy , 2019, Nature Physics.

[25]  A. J. Chua,et al.  Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference. , 2019, Physical review letters.

[26]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[27]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[28]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[29]  A. Samajdar,et al.  Improving the NRTidal model for binary neutron star systems , 2019, Physical Review D.

[30]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  A. Moss Accelerated Bayesian inference using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Fredrik Lindsten,et al.  Elements of Sequential Monte Carlo , 2019, Found. Trends Mach. Learn..

[33]  Tom Charnock,et al.  Fast likelihood-free cosmology with neural density estimators and active learning , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[35]  Richard O'Shaughnessy,et al.  Rapid and accurate parameter inference for coalescing, precessing compact binaries , 2018, 1805.10457.

[36]  Dirk P. Kroese,et al.  Unbiased and consistent nested sampling via sequential Monte Carlo , 2018, 1805.03924.

[37]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[38]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[39]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[40]  Michael Purrer,et al.  Fast and accurate inference on gravitational waves from precessing compact binaries , 2016, 1604.08253.

[41]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[42]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[43]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[44]  Joris De Ridder,et al.  DIAMONDS: a new Bayesian nested sampling tool , 2015, 1509.08311.

[45]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[46]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[47]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[48]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[49]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[50]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[51]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[52]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[53]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[54]  A. Pettitt,et al.  Recursive Pathways to Marginal Likelihood Estimation with Prior-Sensitivity Analysis , 2013, 1301.6450.

[55]  Farhan Feroz,et al.  BAMBI: blind accelerated multimodal Bayesian inference , 2011, 1110.2997.

[56]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[57]  Brendon J. Brewer,et al.  Diffusive nested sampling , 2009, Stat. Comput..

[58]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[59]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[60]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[61]  Yun-Wei Shang,et al.  A Note on the Extended Rosenbrock Function , 2006, Evolutionary Computation.

[62]  Kosuke Imai,et al.  Survey Sampling , 1998, Nov/Dec 2017.

[63]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[64]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[65]  R. Bridges,et al.  VERSION , 1922, Greece and Rome.

[66]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[67]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[68]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[69]  Benedict W J Irwin,et al.  GW 190425 : Observation of a Compact Binary Coalescence with Total Mass ∼ 3 . 4 , 2020 .

[70]  John W. Emerson,et al.  Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions , 2011, R J..

[71]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[72]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[73]  Radford M. Neal Slice Sampling , 2000, physics/0009028.

[74]  H. Wiegand,et al.  Kish, L.: Survey Sampling. John Wiley & Sons, Inc., New York, London 1965, IX + 643 S., 31 Abb., 56 Tab., Preis 83 s. , 1968 .

[75]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[76]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.