Multispectral image classification using wavelets: a simulation study

This work presents methods for multispectral image classification using the discrete wavelet transform. Performance of some conventional classification methods is evaluated, through a Monte Carlo study, with or without using the wavelet transform. Spatial autocorrelation is present in the computer-generated data on different scenes, and the misclassification rates are compared. The results indicate that the wavelet-based method performs best among the methods under study.

[1]  A. Aldroubi,et al.  Wavelets in Medicine and Biology , 1997 .

[2]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Suzuki Hitoshi,et al.  Improved Contextual Classifiers of Multispectral Image Data , 1994 .

[4]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[5]  David L. Donoho,et al.  Improved linear discrimination using time-frequency dictionaries , 1995, Optics + Photonics.

[6]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[7]  N. Pérez de la Blanca,et al.  Improving classical contextual classifications , 1998 .

[8]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[9]  Katharine J. Jones 3D wavelet image processing for spatial and spectral resolution of Landsat images , 1998, Defense, Security, and Sensing.

[10]  Ann-Marie Flygare Classification of Remotely Sensed Data Utilising the Autocorrelation between Spatio-Temporal Neighbours , 1997 .

[11]  K. M. S. Sharma,et al.  A modified contextual classification technique for remote sensing data , 1998 .

[12]  Richard G. Baraniuk,et al.  Wavelet-domain hidden Markov models for signal detection and classification , 1997, Optics & Photonics.

[13]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[14]  Harold H. Szu,et al.  Integration of local texture information in the automatic classification of Landsat images , 1997, Defense, Security, and Sensing.

[15]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[16]  J. Byrnes Wavelets and their applications , 1994 .

[17]  Ronald R. Coifman,et al.  Local discriminant bases , 1994, Optics & Photonics.

[18]  Geir Storvik,et al.  A Simulation Study of Some Contextual Classification Methods For Remotely Sensed Data , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[19]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[20]  Roland L. Redmond,et al.  Estimation and Mapping of Misclassification Probabilities for Thematic Land Cover Maps , 1998 .

[21]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[22]  Hiroyoshi Yamada,et al.  JERS-1 SAR Image Analysis by Wavelet Transform , 1995 .

[23]  S. James Press,et al.  Contextual bayesian classification of remotely sensed data , 1989 .

[24]  Hong-Ye Gao,et al.  Applied wavelet analysis with S-plus , 1996 .

[25]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .