Hyperspherical embedding of graphs and networks in communicability spaces

Let G be a simple connected graph with n nodes and let f"@a"""k(A) be a communicability function of the adjacency matrix A, which is expressible by the following Taylor series expansion: @?"k"="0^[email protected]"kA^k. We prove here that if f"@a"""k(A) is positive semidefinite then the function @h"p","q=(f"@a"""k(A)"p"p+f"@a"""k(A)"q"q-2f"@a"""k(A)"p"q)^1^2 is a Euclidean distance between the corresponding nodes of the graph. Then, we prove that if f"@a"""k(A) is positive definite, the communicability distance induces an embedding of the graph into a hyperdimensional sphere (hypersphere) such as the distances between the nodes are given by @h"p","q. In addition we give analytic results for the communicability distances for the nodes in paths, cycles, stars and complete graphs, and we find functions of the adjacency matrix for which the main results obtained here are applicable. Finally, we study the ratio of the surface area to volume of the hyperspheres in which a few real-world networks are embedded. We give clear indications about the usefulness of this embedding in analyzing the efficacy of geometrical embeddings of real-world networks like brain networks, airport transportation networks and the Internet.

[1]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[2]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[3]  Michele Benzi,et al.  The Physics of Communicability in Complex Networks , 2011, ArXiv.

[4]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[5]  Tony White,et al.  The Structure of Complex Networks , 2011 .

[6]  Pavel Yu. Chebotarev,et al.  The walk distances in graphs , 2011, Discret. Appl. Math..

[7]  Ernesto Estrada,et al.  Graph and Network Theory , 2013, 1302.4378.

[8]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[9]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[10]  J. Caillol,et al.  Random Walks on Hyperspheres of Arbitrary Dimensions , 2004 .

[11]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[12]  Pablo Tarazaga,et al.  Euclidean distance matrices: new characterization and boundary properties , 2009 .

[13]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[14]  Amin Vahdat,et al.  Greedy forwarding in scale-free networks embedded in hyperbolic metric spaces , 2009, SIGMETRICS Perform. Evaluation Rev..

[15]  T. Cover,et al.  Geometrical Probability and Random Points on a Hypersphere , 1967 .

[16]  Pavel Yu. Chebotarev,et al.  A class of graph-geodetic distances generalizing the shortest-path and the resistance distances , 2008, Discret. Appl. Math..

[17]  T. Di Matteo,et al.  Complex networks on hyperbolic surfaces , 2004, cond-mat/0408443.

[18]  J. Sherman,et al.  Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix , 1950 .

[19]  Guy Theraulaz,et al.  Topological efficiency in three-dimensional gallery networks of termite nests , 2008 .

[20]  P. Tarazaga,et al.  CIRCUM-EUCLIDEAN DISTANCE MATRICES AND FACES , 1996 .

[21]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[22]  N. Higham Functions Of Matrices , 2008 .

[23]  Ernesto Estrada The communicability distance in graphs , 2012 .

[24]  Gábor Szabó,et al.  Structure of complex networks , 2005 .

[25]  M. Randic,et al.  Resistance distance , 1993 .

[26]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[27]  A. Uhlmann Spheres and hemispheres as quantum state spaces , 1996 .

[28]  U. V. Luxburg,et al.  Getting lost in space: large sample analysis of the commute distance , 2010, NIPS 2010.

[29]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[30]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[31]  Amin Vahdat,et al.  On curvature and temperature of complex networks , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[33]  Pavel Yu. Chebotarev,et al.  The Forest Metric for Graph Vertices , 2006, ArXiv.

[34]  J. Gower Euclidean Distance Geometry , 1982 .

[35]  Ernesto Estrada Complex networks in the Euclidean space of communicability distances. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Charles R. Johnson,et al.  Connections between the real positive semidefinite and distance matrix completion problems , 1995 .

[37]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  A. Y. Alfakih,et al.  On the nullspace, the rangespace and the characteristic polynomial of Euclidean distance matrices , 2006 .

[39]  Ernesto Estrada Generalized walks-based centrality measures for complex biological networks. , 2010, Journal of theoretical biology.

[40]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[41]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  R. Balaji,et al.  On Euclidean distance matrices , 2007 .

[43]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[44]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[45]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[46]  Jon C. Dattorro,et al.  Convex Optimization & Euclidean Distance Geometry , 2004 .

[47]  Phil Dyke,et al.  An Introduction to Laplace Transforms and Fourier Series , 2002 .

[48]  Yun Fu,et al.  Graph Embedding for Pattern Analysis , 2012 .

[49]  Guy Theraulaz,et al.  Efficiency and robustness in ant networks of galleries , 2004 .

[50]  Guy Theraulaz,et al.  Topological patterns in street networks of self-organized urban settlements , 2006 .

[51]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Michael W. Trosset,et al.  Euclidean and circum-Euclidean distance matrices: Characterizations and linear preservers , 2010 .

[53]  Norman C. Beaulieu,et al.  On monotonicity of the hypersphere volume and area , 2007 .

[54]  P. Blanchard,et al.  Random Walks and Diffusions on Graphs and Databases: An Introduction , 2011 .

[55]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[56]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[57]  Frank Harary,et al.  Distance in graphs , 1990 .

[58]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[59]  Hiroshi Kurata,et al.  Multispherical Euclidean distance matrices , 2010 .

[60]  Marián Boguñá,et al.  Self-similarity of complex networks and hidden metric spaces , 2007, Physical review letters.

[61]  Pavel Yu. Chebotarev,et al.  The Forest Metrics for Graph Vertices , 2002, Electron. Notes Discret. Math..

[62]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[63]  W. Rudin Real and complex analysis , 1968 .

[64]  N.R. Malik,et al.  Graph theory with applications to engineering and computer science , 1975, Proceedings of the IEEE.