The nature of the motions of multiphase filaments in the centers of galaxy clusters

The intracluster medium (ICM) in the centers of galaxy clusters is heavily influenced by the “feedback” from supermassive black holes (SMBHs). Feedback can drive turbulence in the ICM and turbulent dissipation can potentially be an important source of heating. Due to the limited spatial and spectral resolutions of X-ray telescopes, direct observations of turbulence in the hot ICM have been challenging. Recently, we developed a new method to measure turbulence in the ICM using multiphase filaments as tracers. These filaments are ubiquitous in cluster centers and can be observed at very high resolution using optical and radio telescopes. We study the kinematics of the filaments by measuring their velocity structure functions (VSFs) over a wide range of scales in the centers of ∼ 10 galaxy clusters. We find features of the VSFs that correlate with the SMBHs activities, suggesting that SMBHs are the main driver of gas motions in the centers of galaxy clusters. In all systems, the VSF is steeper than the classical Kolmogorov expectation and the slopes vary from system to system. One theoretical explanation is that the VSFs we have measured so far mostly reflect the motion of the driver (jets and bubbles) rather than the cascade of turbulence. We show that in Abell 1795, the VSF of the outer filaments far from the SMBH flattens on small scales to a Kolmogorov slope, suggesting that the cascade is only detectable farther out with the current telescope resolution. The level of turbulent heating computed at small scales is typically an order of magnitude lower than that estimated at the driving scale. Even though SMBH feedback heavily influences the kinematics of the ICM in cluster centers, the level of turbulence it drives is rather low, and turbulent heating can only offset ≲ 10% of the cooling loss, consistent with the findings of numerical simulations.

[1]  S. Allen,et al.  Chandra measurements of gas homogeneity and turbulence at intermediate radii in the Perseus Cluster , 2022, 2211.07680.

[2]  J. Schaye,et al.  Empirical constraints on the turbulence in QSO host nebulae from velocity structure function measurements , 2022, 2209.04344.

[3]  Oxford,et al.  Kinetic Turbulence in Collisionless High-Beta Plasmas , 2022, 2207.05189.

[4]  M. Kounkel,et al.  Turbulence in Milky Way Star-forming Regions Traced by Young Stars and Gas , 2022, The Astrophysical Journal.

[5]  A. Fabian,et al.  The velocity structure of the Intracluster Medium of the Centaurus cluster , 2022, 2203.12635.

[6]  Astrophysics,et al.  Signature of Supersonic Turbulence in Galaxy Clusters Revealed by AGN-driven Hα Filaments , 2022, The Astrophysical Journal Letters.

[7]  W. Forman,et al.  Bubble-driven Gas Uplift in Galaxy Clusters and its Velocity Features , 2022, Monthly notices of the Royal Astronomical Society.

[8]  G. Ferland,et al.  Gas condensation in brightest group galaxies unveiled with MUSE. Morphology and kinematics of the ionized gas , 2022, Astronomy & Astrophysics.

[9]  A. Fabian,et al.  Measuring sloshing, merging and feedback velocities in the Virgo cluster , 2021, Monthly notices of the Royal Astronomical Society.

[10]  C. Federrath,et al.  Velocity structure functions in multiphase turbulence: interpreting kinematics of H$\alpha$ filaments in cool core clusters , 2021, 2109.01771.

[11]  C. Norman,et al.  Survival and mass growth of cold gas in a turbulent, multiphase medium , 2021, 2107.13012.

[12]  C. Pfrommer,et al.  Non-Kolmogorov turbulence in multiphase intracluster medium driven by cold gas precipitation and AGN jets , 2020, 2012.11085.

[13]  E. Komatsu,et al.  Deeply cooled core of the Phoenix galaxy cluster imaged by ALMA with the Sunyaev–Zel’dovich effect , 2020, Publications of the Astronomical Society of Japan.

[14]  A. Fabian,et al.  Measuring bulk flows of the intracluster medium in the Perseus and Coma galaxy clusters using XMM-Newton , 2019, Astronomy & Astrophysics.

[15]  E. Quataert,et al.  Direct Detection of Black Hole-driven Turbulence in the Centers of Galaxy Clusters , 2019, The Astrophysical Journal.

[16]  E. Quataert,et al.  The Impact of Type Ia Supernovae in Quiescent Galaxies. II. Energetics and Turbulence , 2019, The Astrophysical Journal.

[17]  E. Quataert,et al.  The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium , 2019, The Astrophysical Journal.

[18]  Siyao Xu Projected velocity statistics of interstellar turbulence , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  S. Allen,et al.  Suppressed effective viscosity in the bulk intergalactic plasma , 2019, Nature Astronomy.

[20]  C. Reynolds,et al.  Efficient Production of Sound Waves by AGN Jets in the Intracluster Medium , 2019, The Astrophysical Journal.

[21]  B. Benson,et al.  Anatomy of a Cooling Flow: The Feedback Response to Pure Cooling in the Core of the Phoenix Cluster , 2019, The Astrophysical Journal.

[22]  A. Edge,et al.  Driving massive molecular gas flows in central cluster galaxies with AGN feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  M. Donahue,et al.  Ubiquitous cold and massive filaments in cool core clusters , 2019, Astronomy & Astrophysics.

[24]  A. Edge,et al.  An Enormous Molecular Gas Flow in the RX J0821+0752 Galaxy Cluster , 2018, The Astrophysical Journal.

[25]  P. Sharma,et al.  Turbulence in the intracluster medium: simulations, observables, and thermodynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  M. Donahue,et al.  A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole , 2018, The Astrophysical Journal.

[27]  H. Intema,et al.  Signatures of multiple episodes of AGN activity in the core of Abell 1795 , 2018, Astronomy & Astrophysics.

[28]  D. Nagai,et al.  Multiscale analysis of turbulence evolution in the density-stratified intracluster medium , 2018, Monthly Notices of the Royal Astronomical Society.

[29]  G. Voit A Role for Turbulence in Circumgalactic Precipitation , 2018, The Astrophysical Journal.

[30]  A. Edge,et al.  Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. , 2018, 1802.00031.

[31]  C. Reynolds,et al.  Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium , 2018, 1801.06233.

[32]  A. Babul,et al.  Cool-core Clusters: The Role of BCG, Star Formation, and AGN-driven Turbulence , 2018, The Astrophysical Journal.

[33]  S. Allen,et al.  Gas Perturbations in the Cool Cores of Galaxy Clusters: Effective Equation of State, Velocity Power Spectra, and Turbulent Heating , 2017, The Astrophysical Journal.

[34]  A. Edge,et al.  Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters , 2017, 1709.06564.

[35]  V. Springel,et al.  Simulating the interaction of jets with the intracluster medium , 2017, 1703.09223.

[36]  G. Bryan,et al.  AGN Heating in Simulated Cool-core Clusters , 2016, 1611.05455.

[37]  Matteo Guainazzi,et al.  The quiescent intracluster medium in the core of the Perseus cluster , 2016, Nature.

[38]  C. Conselice,et al.  HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster , 2016, 1606.02436.

[39]  C. Reynolds,et al.  HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS , 2016, 1605.01725.

[40]  A. M. Swinbank,et al.  Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample , 2016, 1603.03047.

[41]  M. Donahue,et al.  ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191 , 2016, 1602.05962.

[42]  K. Blundell,et al.  A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies , 2016, 1601.01489.

[43]  A. Schekochihin,et al.  INEFFICIENT DRIVING OF BULK TURBULENCE BY ACTIVE GALACTIC NUCLEI IN A HYDRODYNAMIC MODEL OF THE INTRACLUSTER MEDIUM , 2015, 1511.03271.

[44]  P. Padoan,et al.  SUPERNOVA DRIVING. I. THE ORIGIN OF MOLECULAR CLOUD TURBULENCE , 2015, 1509.04663.

[45]  Di Li,et al.  A NEW METHOD FOR CONSTRAINING MOLECULAR CLOUD THICKNESS: A STUDY OF TAURUS, PERSEUS, AND OPHIUCHUS , 2015, 1508.04220.

[46]  N. Soker,et al.  Heating the intra-cluster medium by jet-inflated bubbles , 2015, 1504.04846.

[47]  R. Sunyaev,et al.  Turbulent heating in galaxy clusters brightest in X-rays , 2014, Nature.

[48]  A. Fabian,et al.  Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations , 2014, 1409.6545.

[49]  G. Tremblay,et al.  Feedback, scatter and structure in the core of the PKS 0745−191 galaxy cluster , 2014, 1407.8008.

[50]  A. Edge,et al.  The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback , 2013, 1310.5450.

[51]  A. M. Swinbank,et al.  Cold gas dynamics in Hydra-A: evidence for a rotating disc , 2013, 1310.4501.

[52]  C. Federrath On the universality of supersonic turbulence , 2013, 1306.3989.

[53]  M. Donahue,et al.  A multiwavelength view of cooling versus AGN heating in the X-ray luminous cool-core of Abell 3581 , 2013, 1305.0050.

[54]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[55]  M. Donahue,et al.  Violent interaction between the AGN and the hot gas in the core of the galaxy cluster Sersic 159-03 , 2011, 1102.5080.

[56]  T. Dame Optimization of Moment Masking for CO Spectral Line Surveys , 2011, 1101.1499.

[57]  U. Cambridge,et al.  Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM–Newton , 2010, 1008.3500.

[58]  S. Veilleux,et al.  ON THE ORIGIN OF THE EXTENDED Hα FILAMENTS IN COOLING FLOW CLUSTERS , 2010, 1008.0392.

[59]  M. Bremer,et al.  The distribution and condition of the warm molecular gas in Abell 2597 and Sersic 159-03 , 2010, 1002.3297.

[60]  J. Kaastra,et al.  A new radiative cooling curve based on an up-to-date plasma emission code , 2009, 0909.5204.

[61]  S. Veilleux,et al.  MMTF-Hα AND HST-FUV IMAGING OF THE FILAMENTARY COMPLEX IN ABELL 1795 , 2009, 0909.1554.

[62]  M. Norman,et al.  Turbulent Motions and Shocks Waves in Galaxy Clusters simulated with AMR , 2009, 0905.3169.

[63]  Cambridge,et al.  Feedback through multiple outbursts in the cluster 2A 0335+096 , 2009, 0904.1374.

[64]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[65]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[66]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[67]  L. P. David,et al.  X-Ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus , 2006, astro-ph/0612100.

[68]  D. A. Rafferty,et al.  The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies , 2006, astro-ph/0605323.

[69]  P. Nulsen,et al.  X-Ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy’s Active Nucleus , 2006, astro-ph/0612100.

[70]  J. Kaastra,et al.  XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096 , 2005, astro-ph/0512401.

[71]  K. Dolag,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005, astro-ph/0507480.

[72]  Cambridge,et al.  A deep Chandra observation of the Centaurus cluster: bubbles, filaments and edges , 2005, astro-ph/0503154.

[73]  A. Fabian,et al.  On Viscosity, Conduction and Sound Waves in the Intracluster Medium , 2005, astro-ph/0501222.

[74]  P. Nulsen,et al.  The Cluster-Scale AGN Outburst in Hydra A , 2004, astro-ph/0408315.

[75]  R. Morris,et al.  The galaxy cluster Abell 3581 as seen by Chandra , 2004, astro-ph/0410154.

[76]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[77]  F. Combes,et al.  Cold molecular gas in cooling flow clusters of galaxies , 2003, astro-ph/0309304.

[78]  Cambridge,et al.  A Chandra Study of the Complex Structure in the Core of 2A 0335+096 , 2003, astro-ph/0303314.

[79]  S. Allen,et al.  Magnetic fields in the Centaurus cluster , 2001, astro-ph/0109337.

[80]  S. Boldyrev Kolmogorov-Burgers Model for Star-forming Turbulence , 2001, astro-ph/0108300.

[81]  A. Fabian,et al.  Spatially resolved X‐ray spectroscopy of the core of the Centaurus cluster , 2001, astro-ph/0109336.

[82]  P. Mazzotta,et al.  Nonhydrostatic Gas in the Core of the Relaxed Galaxy Cluster A1795 , 2001, astro-ph/0108520.

[83]  A. Edge The detection of molecular gas in the central galaxies of cooling flow clusters , 2001, astro-ph/0106225.

[84]  S. Boldyrev Burgers turbulence, intermittency, and nonuniversality , 1997, hep-th/9707255.

[85]  Toshikazu Kato,et al.  VLA Observations of the Radio Galaxy Hydra A , 1990 .

[86]  A. Fabian,et al.  Cooling flows in clusters of galaxies , 1984, Nature.