Photon blockade and quantum dynamics in intracavity coherent photoassociation of Bose-Einstein condensates

We demonstrate that a photon blockade effect exists in the intracavity coherent photoassociation of an atomic Bose-Einstein condensate and that the dynamics of the coupled atomic and molecular condensates can only be successfully described by a quantum treatment of all the interacting fields. We show that the usual mean-field calculational approaches give answers that are qualitatively wrong, even for the mean fields. The quantization of the fields gives a degree of freedom that is not present in analogous nonlinear optical processes. The difference between the semiclassical and quantum predictions can actually increase as the three fields increase in size so that there is no obvious classical limit for this process.