Binary Fluids with Long Range Segregating Interaction. I: Derivation of Kinetic and Hydrodynamic Equations

We study the evolution of a two component fluid consisting of “blue” and “red” particles which interact via strong short range (hard core) and weak long range pair potentials. At low temperatures the equilibrium state of the system is one in which there are two coexisting phases. Under suitable choices of space-time scalings and system parameters we first obtain (formally) a mesoscopic kinetic Vlasov–Boltzmann equation for the one particle position and velocity distribution functions, appropriate for a description of the phase segregation kinetics in this system. Further scalings then yield Vlasov–Euler and incompressible Vlasov–Navier–Stokes equations. We also obtain, via the usual truncation of the Chapman–Enskog expansion, compressible Vlasov–Navier–Stokes equations.

[1]  J. Lebowitz,et al.  Hydrodynamic limit of the stationary Boltzmann equation in a slab , 1994 .

[2]  Garcia,et al.  A consistent Boltzmann algorithm. , 1995, Physical review letters.

[3]  J. Lebowitz,et al.  On the Derivation of Hydrodynamics from the Boltzmann Equation , 2000 .

[4]  ON THE KINETIC THEORY OF A VAN DER WAALS GAS , 1967 .

[5]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[6]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[7]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[8]  Raffaele Esposito,et al.  Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .

[9]  Mirosław Lachowicz,et al.  On the initial layer and the existence theorem for the nonlinear Boltzmann equation , 1986 .

[10]  J. Lebowitz,et al.  The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation , 1995 .

[11]  Giambattista Giacomin,et al.  Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits , 1997, comp-gas/9705001.

[12]  O. Lanford Time evolution of large classical systems , 1975 .

[13]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. , 1988, Physical review. A, General physics.

[14]  P. Fratzl,et al.  Modeling of Phase Separation in Alloys with Coherent Elastic Misfit , 1999 .

[15]  P. Oliver,et al.  Modelling of Phase Separation in Alloys with Coherent Elastic Misfit , 1999 .

[16]  R. Caflisch Asymptotic expansions of solutions for the Boltzmann equation , 1987 .

[17]  Eric D. Siggia,et al.  Late stages of spinodal decomposition in binary mixtures , 1979 .

[18]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[19]  François Golse,et al.  On a boundary layer problem for the nonlinear Boltzmann equation , 1988 .

[20]  C. Graham,et al.  Stochastic particle approximations for generalized Boltzmann models and convergence estimates , 1997 .

[21]  C. Cercignani On the Boltzmann equation for rigid spheres , 1972 .

[22]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[23]  J. L. Lebowitz,et al.  Spinodal Decomposition in Binary Gases , 1997 .

[24]  O. Penrose,et al.  Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition , 1966 .

[25]  Solutions to the Boltzmann Equation in the Boussinesq Regime , 1997, cond-mat/9709318.

[26]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[27]  Lebowitz,et al.  Exact macroscopic description of phase segregation in model alloys with long range interactions. , 1996, Physical review letters.

[28]  M. Grmela Kinetic equation approach to phase transitions , 1971 .