ACVR1 mutations in DIPG: lessons learned from FOP.

Whole-genome sequencing studies have recently identified a quarter of cases of the rare childhood brainstem tumor diffuse intrinsic pontine glioma to harbor somatic mutations in ACVR1. This gene encodes the type I bone morphogenic protein receptor ALK2, with the residues affected identical to those that, when mutated in the germline, give rise to the congenital malformation syndrome fibrodysplasia ossificans progressiva (FOP), resulting in the transformation of soft tissue into bone. This unexpected link points toward the importance of developmental biology processes in tumorigenesis and provides an extensive experience in mechanistic understanding and drug development hard-won by FOP researchers to pediatric neurooncology. Here, we review the literature in both fields and identify potential areas for collaboration and rapid advancement for patients of both diseases.

[1]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[2]  M. Bernstein,et al.  Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. , 2007, Journal of neurosurgery.

[3]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[4]  Roger J. Packer,et al.  Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. , 1993, Neurosurgery.

[5]  A. Bullock,et al.  Development of an ALK2-biased BMP type I receptor kinase inhibitor. , 2013, ACS chemical biology.

[6]  G. Broggi,et al.  Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells , 2006, Nature.

[7]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[8]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[9]  David M. Rocke,et al.  Neurological symptoms in individuals with fibrodysplasia ossificans progressiva , 2012, Journal of Neurology.

[10]  Darren Hargrave,et al.  Paediatric and adult malignant glioma: close relatives or distant cousins? , 2012, Nature Reviews Clinical Oncology.

[11]  J Boyett,et al.  Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. , 1993, Neurosurgery.

[12]  Andrew D. A. Maidment,et al.  An Acvr1 R206H knock‐in mouse has fibrodysplasia ossificans progressiva , 2012, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  P. Varlet,et al.  Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas , 2012, PloS one.

[14]  E. Shore,et al.  Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting , 2011, Gene Therapy.

[15]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[16]  Li Ding,et al.  C11ORF95-RELA FUSIONS DRIVE ONCOGENIC NF-KB SIGNALING IN EPENDYMOMA. , 2014 .

[17]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[18]  Masahiro Iwamoto,et al.  Potent Inhibition of Heterotopic Ossification by Nuclear Retinoic Acid Receptor γ Agonists , 2011, Nature Medicine.

[19]  R. Kalluri,et al.  Conversion of vascular endothelial cells into multipotent stem-like cells , 2010, Nature Medicine.

[20]  R. Goldsby,et al.  CNS demyelination in fibrodysplasia ossificans progressiva , 2012, Journal of Neurology.

[21]  Carlo C. Maley,et al.  Clonal evolution in cancer , 2012, Nature.

[22]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[23]  Stefan Knapp,et al.  Structure of the Bone Morphogenetic Protein Receptor ALK2 and Implications for Fibrodysplasia Ossificans Progressiva , 2012, The Journal of Biological Chemistry.

[24]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[25]  Richard G Grundy,et al.  Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  In Ho Choi,et al.  A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva , 2006, Nature Genetics.

[27]  N. Boddaert,et al.  Stereotactic biopsy of diffuse pontine lesions in children. , 2007, Journal of neurosurgery.

[28]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[29]  S. Stock,et al.  Substance P signaling mediates BMP‐dependent heterotopic ossification , 2011, Journal of cellular biochemistry.

[30]  Charles C Hong,et al.  Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. , 2008, Nature chemical biology.

[31]  S. Baker,et al.  Prospective collection of tissue samples at autopsy in children with diffuse intrinsic pontine glioma , 2010, Cancer.

[32]  David T. W. Jones,et al.  Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. , 2013, Cancer cell.

[33]  Barbara S. Paugh,et al.  Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  B. Hogan,et al.  Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. , 1997, Development.

[35]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[36]  M. Souweidane Editorial: Convection-enhanced delivery for diffuse intrinsic pontine glioma. , 2014, Journal of neurosurgery. Pediatrics.

[37]  Li Ding,et al.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.

[38]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[39]  K. Warren Diffuse intrinsic pontine glioma: poised for progress , 2012, Front. Oncol..

[40]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[41]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[42]  B. Garcia,et al.  Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma , 2013, Science.

[43]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[44]  S. Mundlos,et al.  Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1 , 2009, Human mutation.

[45]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[46]  A. Ashworth,et al.  Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. , 2013, Cancer discovery.

[47]  J. Kessler,et al.  The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation , 2012, Developmental neurobiology.

[48]  Bernhard Schmierer,et al.  TGFβ–SMAD signal transduction: molecular specificity and functional flexibility , 2007, Nature Reviews Molecular Cell Biology.

[49]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[50]  A. Bullock,et al.  A New Class of Small Molecule Inhibitor of BMP Signaling , 2013, PloS one.