Robustness properties of dimensionality reduction with Gaussian random matrices

In this paper, motivated by the results in compressive phase retrieval, we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the robustness property of Johnson-Lindenstrauss lemma and the robustness property of restricted isometry property with corruption for Gaussian random matrices. Secondly, we obtain a sharp estimate for the optimal lower and upper bounds of norm distortion rates of Gaussian random matrices under a given erasure ratio. This allows us to establish the strong restricted isometry property with the almost optimal restricted isometry property (RIP) constants, which plays a central role in the study of phaseless compressed sensing. As a byproduct of our results, we also establish the robustness property of Gaussian random finite frames under erasure.

[1]  Dustin G. Mixon,et al.  Numerically erasure-robust frames , 2012, 1202.4525.

[2]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[3]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[4]  Jan Vyb'iral A variant of the Johnson-Lindenstrauss lemma for circulant matrices , 2010, 1002.2847.

[5]  Yang Wang,et al.  Invertibility and Robustness of Phaseless Reconstruction , 2013, Applied and Computational Harmonic Analysis.

[6]  Avraham Adler,et al.  Lambert-W Function , 2015 .

[7]  Zhiqiang Xu,et al.  A strong restricted isometry property, with an application to phaseless compressed sensing , 2014, ArXiv.

[8]  Dustin G. Mixon,et al.  Near-optimal phase retrieval of sparse vectors , 2013, Optics & Photonics - Optical Engineering + Applications.

[9]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[10]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[11]  Radu Balan,et al.  Stability of phase retrievable frames , 2013, Optics & Photonics - Optical Engineering + Applications.

[12]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[13]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[14]  C. Schütt,et al.  On the minimum of several random variables , 2006 .

[15]  Elena Braverman,et al.  Stable recovery of analysis based approaches , 2015 .

[16]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[17]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[18]  Zhiqiang Xu,et al.  Phase Retrieval for Sparse Signals , 2013, ArXiv.

[19]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[20]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[21]  R. Nowak,et al.  Compressed Sensing for Networked Data , 2008, IEEE Signal Processing Magazine.

[22]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[23]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[24]  M. Ledoux The concentration of measure phenomenon , 2001 .

[25]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[26]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[27]  Yang Wang Random Matrices and Erasure Robust Frames , 2014, ArXiv.

[28]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[29]  Sjoerd Dirksen,et al.  Dimensionality Reduction with Subgaussian Matrices: A Unified Theory , 2014, Foundations of Computational Mathematics.