Estimating the Impact of Real Observations in Regional Numerical Weather Prediction Using an Ensemble Kalman Filter

AbstractThe ensemble sensitivity method of Liu and Kalnay estimates the impact of observations on forecasts without observing system experiments (OSEs), in a manner similar to the adjoint sensitivity method of Langland and Baker but without using an adjoint model. In this study, the ensemble sensitivity method is implemented with the local ensemble transform Kalman filter (LETKF) and the Weather Research and Forecasting (WRF) model with real observations. The results in the case of Typhoon Sinlaku (2008) show that upper-air soundings have the largest positive impact on the 12-h forecasts, and that the targeted impact evaluation performs as expected and is computationally efficient. Denying negative-impact observations improves the forecasts, validating the estimated observation impact.

[1]  R. Gelaro,et al.  Observation Sensitivity Calculations Using the Adjoint of the Gridpoint Statistical Interpolation (GSI) Analysis System , 2008 .

[2]  C. Cardinali Monitoring the observation impact on the short‐range forecast , 2009 .

[3]  Ronald Gelaro,et al.  Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models , 2009 .

[4]  Sim D. Aberson,et al.  The Impact of Dropwindsonde Data on Typhoon Track Forecasts in DOTSTAR , 2007 .

[5]  Roger Daley,et al.  Observation and background adjoint sensitivity in the adaptive observation‐targeting problem , 2007 .

[6]  Munehiko Yamaguchi,et al.  Intercomparison of Targeted Observation Guidance for Tropical Cyclones in the Northwestern Pacific , 2009 .

[7]  Craig H. Bishop,et al.  A Comparison of Adaptive Observing Guidance for Atlantic Tropical Cyclones , 2006 .

[8]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[9]  Rolf H. Langland,et al.  Observation Impact during the North Atlantic TReC—2003 , 2005 .

[10]  Jing-Shan Hong,et al.  Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An Overview , 2005 .

[11]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[12]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[13]  Takemasa Miyoshi,et al.  The Local Ensemble Transform Kalman Filter with the Weather Research and Forecasting Model: Experiments with Real Observations , 2012, Pure and Applied Geophysics.

[14]  Sim D. Aberson,et al.  Targeted Observations to Improve Operational Tropical Cyclone Track Forecast Guidance , 2003 .

[15]  Craig H. Bishop,et al.  Interpretation of Adaptive Observing Guidance for Atlantic Tropical Cyclones , 2007 .

[16]  Jean-Noël Thépaut,et al.  The value of observations. I: Data denial experiments for the Atlantic and the Pacific , 2007 .

[17]  B. Ancell,et al.  Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting , 2007 .

[18]  Ronald Gelaro,et al.  Targeted observations in FASTEX: Adjoint‐based targeting procedures and data impact experiments in IOP17 and IOP18 , 1999 .

[19]  F. Bouttier,et al.  Observing‐system experiments in the ECMWF 4D‐Var data assimilation system , 2001 .

[20]  Martin Weissmann,et al.  Sensitivity of Typhoon Forecasts to Different Subsets of Targeted Dropsonde Observations , 2010 .

[21]  T. Miyoshi The Gaussian Approach to Adaptive Covariance Inflation and Its Implementation with the Local Ensemble Transform Kalman Filter , 2011 .

[22]  Ricardo Todling,et al.  The THORPEX Observation Impact Intercomparison Experiment , 2010 .

[23]  Sim D. Aberson,et al.  The Impact of Dropwindsonde Observations on Typhoon Track Forecasts in DOTSTAR and T-PARC , 2011 .

[24]  Munehiko Yamaguchi,et al.  Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP) , 2011 .

[25]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[26]  S. Aberson Large Forecast Degradations due to Synoptic Surveillance during the 2004 and 2005 Hurricane Seasons , 2008 .

[27]  Russell L. Elsberry,et al.  Tropical Cyclone Structure (TCS08) Field Experiment Science Basis, Observational Platforms, and Strategy , 2008 .

[28]  J. Yorke,et al.  Four-dimensional ensemble Kalman filtering , 2004 .

[29]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[30]  James D. Doyle,et al.  Naval Research Laboratory Multiscale Targeting Guidance for T-PARC and TCS-08 , 2010 .

[31]  Chun‐Chieh Wu,et al.  Typhoon Initialization in a Mesoscale Model—Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR , 2008 .

[32]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[33]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[34]  Rolf H. Langland,et al.  As assessment of the singular‐vector approach to targeted observing using the FASTEX dataset , 1999 .

[35]  Roberto Buizza,et al.  Targeting Observations Using Singular Vectors , 1999 .

[36]  E. Kalnay,et al.  Estimating observation impact without adjoint model in an ensemble Kalman filter , 2008 .

[37]  Koji Yamashita,et al.  The Influence of Assimilating Dropsonde Data on Typhoon Track and Midlatitude Forecasts , 2011 .

[38]  Rolf H. Langland,et al.  Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system , 2004 .

[39]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[40]  Lars Isaksen,et al.  Use and impact of automated aircraft data in a global 4DVAR data assimilation system , 2003 .

[41]  Lihang Zhou,et al.  AIRS near-real-time products and algorithms in support of operational numerical weather prediction , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  Junjie Liu,et al.  Correction of ‘Estimating observation impact without adjoint model in an ensemble Kalman filter’ , 2010 .