Hybrid quantum systems with high-T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_c$$\end{document}c superconducting
暂无分享,去创建一个
J. Lesueur | N. Bergeal | C. Feuillet-Palma | F. Couëdo | G. Saïz | P. Amari | Z. Velluire Pellat | E. Maréchal | N. Moulonguet | G. C. Ménard | S. Kozlov | C. Medous | J. Paris | R. Hostein | J. Lesueur | Z. Velluire-Pellat | G. Saïz
[1] E. Géron,et al. High-temperature superconducting nano-meanders made by ion irradiation , 2019 .
[2] N. Kalhor,et al. Strong spin-photon coupling in silicon , 2017, Science.
[3] Jacob M. Taylor,et al. A coherent spin–photon interface in silicon , 2017, Nature.
[4] D. Koelle,et al. Coupling ultracold atoms to a superconducting coplanar waveguide resonator , 2017, Nature Communications.
[5] M. Affronte,et al. YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles , 2015, 1503.06145.
[6] G. Faini,et al. High-Tc superconducting Josephson mixers for terahertz heterodyne detection , 2014 .
[7] M. Brustolon,et al. A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical , 2012 .
[8] P. Hakonen,et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.
[9] Jonas Zmuidzinas,et al. Superconducting Microresonators: Physics and Applications , 2012 .
[10] J. Morton,et al. Electron spin ensemble strongly coupled to a three-dimensional microwave cavity , 2011, 1106.0507.
[11] W. Oliver,et al. Study of loss in superconducting coplanar waveguide resonators , 2010, 1010.6063.
[12] R. J. Schoelkopf,et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.
[13] S. Filipp,et al. Coplanar waveguide resonators for circuit quantum electrodynamics , 2008, 0807.4094.
[14] Erik Lucero,et al. Generation of Fock states in a superconducting quantum circuit , 2008, Nature.
[15] J. Teufel,et al. Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.
[16] P. Bertet,et al. Tunable Resonators for Quantum Circuits , 2007, 0712.0221.
[17] Manuel Castellanos-Beltran,et al. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .
[18] A. Chiodoni,et al. MICROWAVE DISSIPATION IN YBCO COPLANAR RESONATORS WITH UNIFORM AND NON-UNIFORM COLUMNAR DEFECT DISTRIBUTION , 2004 .
[19] S. Girvin,et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.
[20] H. Leduc,et al. A broadband superconducting detector suitable for use in large arrays , 2003, Nature.
[21] Irina Vendik,et al. Empirical model of the microwave properties of high-temperature superconductors , 1998 .
[22] F. Fox,et al. Microwave properties of YBa2Cu3O7−x thin films studied with coplanar transmission line resonators , 1993 .
[23] M. Scheffler,et al. On-Chip ESR Measurements of DPPH at mK Temperatures , 2015 .
[24] Stafford Withington,et al. Superconducting kinetic inductance detectors for astrophysics , 2007 .