Adsorption of CO2 on MIL-53(Al): FTIR evidence of the formation of dimeric CO2 species.

FTIR spectra of (12)CO2 and (12)CO2 + (13)CO2 mixtures adsorbed on MIL-53(Al) reveal the formation of highly symmetric dimeric (CO2)2 species connected to two structural OH groups.

[1]  A. Vimont,et al.  An advanced approach for measuring acidity of hydroxyls in confined space: a FTIR study of low-temperature CO and (15)N2 adsorption on MOF samples from the MIL-53(Al) series. , 2015, Physical chemistry chemical physics : PCCP.

[2]  M. Seredych,et al.  Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature. , 2013, ACS applied materials & interfaces.

[3]  A. Ghoufi,et al.  Evaluation of MIL-47(V) for CO2-Related Applications , 2013 .

[4]  C. Serre,et al.  Effect of the organic functionalization of flexible MOFs on the adsorption of CO2 , 2012 .

[5]  M. Daturi Infrared Characterisation of Metal Organic Frameworks , 2012 .

[6]  S. Bordiga,et al.  Tailoring metal-organic frameworks for CO2 capture: the amino effect. , 2011, ChemSusChem.

[7]  Y. Chabal,et al.  Understanding the preferential adsorption of CO2 over N2 in a flexible metal-organic framework. , 2011, Journal of the American Chemical Society.

[8]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[9]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[10]  A. Goodman,et al.  FT-IR Study of CO2 Adsorption in a Dynamic Copper(II) Benzoate-Pyrazine Host with CO2-CO2 Interactions in the Adsorbed State , 2011 .

[11]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[12]  D. Farrusseng,et al.  Investigation of Acid Centers in MIL‐53(Al, Ga) for Brønsted‐Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling , 2010 .

[13]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[14]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[15]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[16]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[17]  C. Serre,et al.  Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic-framework MIL-53 or Cr3+(OH)(O2C–C6H4–CO2) , 2007 .

[18]  Y. Ikushima,et al.  Polar attributes of supercritical carbon dioxide. , 2005, Accounts of chemical research.

[19]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[20]  K. Hadjiivanov,et al.  FTIR study of the low-temperature adsorption and co-adsorption of CO and N2 on NaY zeolite: evidence of simultaneous coordination of two molecules to one Na+ site , 1999 .

[21]  K. Hadjiivanov,et al.  FTIR spectroscopic evidence of formation of geminal dinitrogen species during the low-temperature N2 adsorption on NaY zeolites , 1999 .

[22]  C. Arean,et al.  The vibrational spectroscopy of H2, N2, CO and NO adsorbed on the titanosilicate molecular sieve ETS-10 , 1999 .

[23]  P. Hollins The influence of surface defects on the infrared spectra of adsorbed species , 1992 .

[24]  L. Napolitano Materials , 1984, Science.