A quasi-Lagrangian moving mesh discontinuous Galerkin method for hyperbolic conservation laws

A moving mesh discontinuous Galerkin method is presented for the numerical solution of hyperbolic conservation laws. The method is a combination of the discontinuous Galerkin method and the mesh movement strategy which is based on the moving mesh partial differential equation approach and moves the mesh continuously in time and orderly in space. It discretizes hyperbolic conservation laws on moving meshes in the quasi-Lagrangian fashion with which the mesh movement is treated continuously and no interpolation is needed for physical variables from the old mesh to the new one. Two convection terms are induced by the mesh movement and their discretization is incorporated naturally in the DG formulation. Numerical results for a selection of one- and two-dimensional scalar and system conservation laws are presented. It is shown that the moving mesh DG method achieves the theoretically predicted order of convergence for problems with smooth solutions and is able to capture shocks and concentrate mesh points in non-smooth regions. Its advantage over uniform meshes and its insensitiveness to mesh smoothness are also demonstrated.

[1]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[3]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[4]  M. Baines Moving finite elements , 1994 .

[5]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[6]  Bülent Karasözen,et al.  Moving mesh discontinuous Galerkin methods for PDEs with traveling waves , 2016, Appl. Math. Comput..

[7]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[8]  Ruo Li,et al.  Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws , 2006, J. Sci. Comput..

[9]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[10]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[11]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[14]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[15]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[16]  Bradley E. Treeby,et al.  Mesh Density Functions Based on Local Bandwidth Applied to Moving Mesh Methods , 2016 .

[17]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter , 2016 .

[18]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes , 2017 .

[19]  T. Dupont Mesh modification for evolution equations , 1982 .

[20]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[21]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[22]  Peter K. Jimack,et al.  Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations , 2011 .

[23]  Xiaobo Yang,et al.  A Moving Mesh WENO Method for One-Dimensional Conservation Laws , 2012, SIAM J. Sci. Comput..

[24]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[25]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[26]  Fei Zhang,et al.  Moving mesh finite element simulation for phase-field modeling of brittle fracture and convergence of Newton's iteration , 2017, J. Comput. Phys..

[27]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[30]  Jun Zhu,et al.  Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes , 2013, J. Comput. Phys..

[31]  Yinhua Xia,et al.  Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes , 2018, Math. Comput..

[32]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[33]  Weizhang Huang,et al.  On the mesh nonsingularity of the moving mesh PDE method , 2018, Math. Comput..

[34]  P. K. Jimack,et al.  Temporal derivatives in the finite-element method on continuously deforming grids , 1991 .

[35]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[36]  John A. Mackenzie,et al.  A Discontinuous Galerkin Moving Mesh Method for Hamilton-Jacobi Equations , 2007, SIAM J. Sci. Comput..

[37]  L. Margolin Introduction to “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds” , 1997 .

[38]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[39]  Randolph E. Bank,et al.  Symmetric Error Estimates for Moving Mesh Mixed Methods for Advection-Diffusion Equations , 2002, SIAM J. Numer. Anal..

[40]  Tao Tang,et al.  Moving Mesh Methods for Computational Fluid Dynamics , 2022 .

[41]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[42]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[43]  R. Bank,et al.  Analysis of some moving space-time finite element methods , 1993 .

[44]  Weizhang Huang,et al.  How a Nonconvergent Recovered Hessian Works in Mesh Adaptation , 2014, SIAM J. Numer. Anal..

[45]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[46]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[47]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[48]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[49]  Jun Zhu,et al.  Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes , 2009, J. Sci. Comput..

[50]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[51]  Min Zhang,et al.  An Adaptive Moving Mesh Discontinuous Galerkin Method for the Radiative Transfer Equation , 2018, Communications in Computational Physics.

[52]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[53]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[54]  Weizhang Huang,et al.  A geometric discretization and a simple implementation for variational mesh generation and adaptation , 2014, J. Comput. Phys..

[55]  Paul Andries Zegeling,et al.  A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media , 2016, 1611.08553.