Collaborative Recommendation of Online Video Lectures in e-Learning System

It is becoming increasingly difficult for learners to find the lectures they are looking for. In turn, the ability to find the particular lecture sought by the learner in an accurate and prompt manner has become an important issue in e-Learning. To deal this issue, in this paper. we present a collaborative approach to provide personalized recommendations of online video lectures. The proposed approach first identifies candidated video lectures that will be of interest to a certain user. Partitioned collaborative filtering is employed as an approach in order to generate neighbor learners and predict learners'preferences for the lectures. Thereafter, Attribute-based filtering is employed to recommend a final list of video lectures that the target user will like the most.