Generation of tunable, 100–800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30–80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100–800 MeV. These beams have angular divergence of 1–4 mrad, and 5%–25% energy spread, with a resulting brightness 1011 electrons mm−2 MeV−1 mrad−2. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of beam quality, concentrating a significant fraction of the accelerated charge into the quasi-monoenergetic component.

[1]  G. Shvets,et al.  Electron self-injection and trapping into an evolving plasma bubble. , 2009, Physical review letters.

[2]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[3]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[4]  W. Mori,et al.  Generation of ultra-intense single-cycle laser pulses by using photon deceleration , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S R Nagel,et al.  Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. , 2009, Physical review letters.

[6]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[7]  Energy scaling of quasi-monoenergetic electron beams from laser wakefields driven by 40-TW ultra-short pulses , 2007 .

[8]  M. Mostafavi,et al.  Absolute calibration for a broad range single shot electron spectrometer , 2006 .

[9]  Wei Lu,et al.  A nonlinear theory for multidimensional relativistic plasma wave wakefieldsa) , 2006 .

[10]  On the stability of laser wakefield electron accelerators in the monoenergetic regime , 2007 .

[11]  E. W. Herold,et al.  Controlled fusion , 1959, IRE Transactions on Electron Devices.

[12]  M. Lontano,et al.  Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma. , 2003, Optics express.

[13]  S. Reed,et al.  Frequency-Domain Streak Camera for ultrafast imaging of evolving light-velocity objects , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[14]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[15]  Tae Jun Yu,et al.  Stable generation of GeV-class electron beams from self-guided laser–plasma channels , 2008 .

[16]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[17]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[18]  Zhi‐zhan Xu,et al.  Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide , 2011 .

[19]  D. Habs,et al.  Few-cycle laser-driven electron acceleration. , 2009, Physical review letters.

[20]  Antoine Rousse,et al.  Compton scattering x-ray sources driven by laser wakefield acceleration , 2005 .

[21]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[22]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[23]  A. Pukhov,et al.  Monoenergetic electron beam optimization in the bubble regime , 2005 .

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  V Malka,et al.  Observation of laser-pulse shortening in nonlinear plasma waves. , 2005, Physical review letters.

[26]  R. Fonseca,et al.  Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator. , 2009, Physical review letters.

[27]  H. Schwoerer,et al.  Quasimonoenergetic electron acceleration in the self-modulated laser wakefield regime , 2009 .

[28]  W. A. Gillespie,et al.  High quality electron beams from a laser wakefield accelerator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[29]  B. Shadwick,et al.  Laser plasma acceleration with a negatively chirped pulse: all-optical control over dark current in the blowout regime , 2012 .

[30]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[31]  P. Norreys,et al.  Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs , 2009 .

[32]  A Ting,et al.  Measurement of electro-optic shock and electron acceleration in a strongly cavitated laser wakefield accelerator. , 2010, Physical review letters.

[33]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[34]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[35]  N. Hafz,et al.  Evolution of self-injected quasi-monoenergetic electron beams in a plasma bubble , 2011 .

[36]  Su,et al.  Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[38]  V. Malka,et al.  Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results , 2009 .

[39]  Bahman Hafizi,et al.  Laser-pumped coherent x-ray free-electron laser , 2009 .

[40]  Edward Ott,et al.  Self‐focusing of short intense pulses in plasmas , 1987 .

[41]  U Schramm,et al.  Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. , 2008, Physical review letters.

[42]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[43]  Warren B. Mori,et al.  Beam loading by electrons in nonlinear plasma wakesa) , 2009 .

[44]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[45]  Erik Lefebvre,et al.  Electron self-injection into an evolving plasma bubble: Quasi monoenergetic laser-plasma acceleration in the blowout regime , 2011 .

[46]  Eric Esarey,et al.  Tunable laser plasma accelerator based on longitudinal density tailoring , 2011 .

[47]  Dodd,et al.  Laser injection of ultrashort electron pulses into Wakefield plasma waves. , 1996, Physical review letters.

[48]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[49]  Mora,et al.  Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  D. Du,et al.  Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse , 2010 .

[51]  Stepan Bulanov,et al.  Formation of optical bullets in laser-driven plasma bubble accelerators. , 2010 .

[52]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[53]  Zulfikar Najmudin,et al.  Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments , 2006 .

[54]  G. Poplau,et al.  Multigrid algorithms for the fast calculation of space-charge effects in accelerator design , 2004, IEEE Transactions on Magnetics.

[55]  G. Shvets,et al.  Holographic visualization of laser wakefields , 2010 .

[56]  A. Lifschitz,et al.  Dark-current-free petawatt laser-driven wakefield accelerator based on electron self-injection into an expanding plasma bubble , 2010 .