Koiter Estimate Revisited

We prove a general adimensional energy estimate between the solution of the three-dimensional Lame system on a thin clamped shell and a displacement reconstructed from the solution of the classical two-dimensional Koiter model. This estimate only involves the thickness parameter e, constants attached to the mid-surface, the two-dimensional energy of the solution of the Koiter model and ``wave-lengths'' associated with this latter solution. This bound is in the same spirit as Koiter's heuristic estimate (1970) and can be viewed as an a posteriori estimation of the modeling error by means of the two-dimensional solution. It is general with respect to the geometry of the mid-surface which is an arbitrary smooth manifold with boundary. Taking boundary layer terms into account, we prove that our estimates are sharp in the cases of plates and elliptic shells.

[1]  Erwan Faou,et al.  Multiscale Expansions for Linear Clamped Elliptic Shells , 2005 .

[2]  Douglas N. Arnold,et al.  On the Range of Applicability of the Reissner–Mindlin and Kirchhoff–Love Plate Bending Models , 2002 .

[3]  C. Schwab,et al.  Fourier mode analysis of layers in shallow shell deformations , 2001 .

[4]  M. Dauge,et al.  Développements asymptotiques complets pour des coques faiblement courbées encastrées ou libres , 2000 .

[5]  Cristinel Mardare,et al.  Asymptotic Justification of the Kirchhoff–Love Assumptions for a Linearly Elastic Clamped Shell , 2000 .

[6]  Monique Dauge,et al.  The Influence of Lateral Boundary Conditions on the Asymptotics in Thin Elastic Plates , 1999, SIAM J. Math. Anal..

[7]  Monique Dauge,et al.  EIGENMODE ASYMPTOTICS IN THIN ELASTIC PLATES , 1999 .

[8]  Adel Blouza,et al.  Existence and uniqueness for the linear Koiter model for shells with little regularity , 1999 .

[9]  Monique Dauge,et al.  Higher order bending and membrane responses of thin linearly elastic plates , 1998 .

[10]  Philippe G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations , 1996 .

[11]  P. G. Ciarlet,et al.  A justification of the Marguerre-von Kármán equations , 1986 .

[12]  Frederic Y. M. Wan,et al.  Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory , 1984 .

[13]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[14]  Fritz John,et al.  Refined interior equations for thin elastic shells , 1971 .

[15]  P. M. Naghdi,et al.  THEORY OF ELASTIC THIN SHELLS , 1962 .

[16]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[17]  Antti H. Niemi,et al.  Benchmark computations on point-loaded shallow shells: Fourier vs.FEM , 2007 .

[18]  H. Hakula Propagation of singularities on thin shells with hyperbolic regions , 2003 .

[19]  Erwan Faou,et al.  Elasticity on a thin shell: Formal series solution , 2002 .

[20]  Cristinel Mardare,et al.  A justification of linear Koiter and Naghdi's models for totally clamped shell , 2002 .

[21]  E. Faou,et al.  Complete asymptotics for shallow shells , 2001 .

[22]  Erwan Faou,et al.  Developpements asymptotiques dans les coques minces lineairement elastiques , 2000 .

[23]  P. G. Ciarlet,et al.  Justification d'un modèle linéaire bi-dimensionnel de coques «faiblement courbées» en coordonnées curvilignes , 1997 .

[24]  P. G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations , 1996 .

[25]  Monique Dauge,et al.  Asymptotics of arbitrary order for a thin elastic clamped plate , 1996 .

[26]  P. G. Ciarlet,et al.  Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations , 1996 .

[27]  B. Miara,et al.  Asymptotic analysis of linearly elastic shells , 1996 .

[28]  O. Alexandrescu THEOREME D'EXISTENCE POUR LE MODELE BIDIMENSIONAL DE COQUE NON LINEAIRE DEW.T. KOITER , 1994 .

[29]  P. G. Ciarlet,et al.  ANALYSE ASYMPTOTIQUE DES COQUES LINEAIREMENT ELASTIQUES. I: COQUES MEMBRANAIRES , 1994 .

[30]  P. G. Ciarlet,et al.  ANALYSE ASYMPTOTIQUE DES COQUES LINEAIREMENT ELASTIQUES. II: COQUES EN FLEXION , 1994 .

[31]  E. Sanchez-Palencia,et al.  Passage à la limite de l'élasticité tridimensionnelle à la théorie asymptotique des coques minces , 1990 .

[32]  S. Nazarov,et al.  Edge effect in the bending of a thin three-dimensional plate , 1989 .

[33]  P. G. Ciarlet,et al.  Sur L’Ellipticite du Modele Lineaire de coques de W.T. Koiter , 1976 .

[34]  W. T. Koiter,et al.  Foundations of shell theory , 1973 .

[35]  V. V. Novozhilov,et al.  Thin shell theory , 1964 .

[36]  P. M. Naghdi,et al.  FOUNDATIONS OF ELASTIC SHELL THEORY , 1962 .

[37]  G. Kirchhoff,et al.  Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. , 1850 .