Visualizing the Behavior of Dislocations—Seeing is Believing

The spatial resolution of the transmission electron microscope makes it an ideal environment in which to continuously track the real-time response of a system to an external stimulus and to discover and quantify the rate-limiting fundamental microscopic processes and mechanisms governing the macroscopic properties. Advances in instrumentation, stage design, recording media, computational power, and image manipulation software are providing new opportunities for not only observing the microscopic mechanisms but also measuring concurrently the macroscopic response. In this article, the capability of this technique as applied to mechanical properties of materials is highlighted.

[1]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[2]  R. W. Horne,et al.  Direct Observations of the Arrangement and Motion of Dislocations in Aluminium , 1956 .

[3]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[4]  David C. Dunand,et al.  Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys , 2002 .

[5]  R. Wagner,et al.  In situ high-voltage electron microscope deformation study of a two-phase (α2 + γ) Ti-Al alloy , 1997 .

[6]  Reuter,et al.  Cyclic growth of strain-relaxed islands. , 1994, Physical review letters.

[7]  Oliver Kraft,et al.  Interface controlled plasticity in metals: dispersion hardening and thin film deformation , 2001 .

[8]  Y. Bréchet,et al.  Investigation of dislocation mobilities in germanium in the low-temperature range by in situ straining experiments , 1988 .

[9]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[10]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[11]  Dmitri Golberg,et al.  Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope , 2007 .

[12]  Jozef Keckes,et al.  Size-independent stresses in Al thin films thermally strained down to −100 °C , 2007 .

[13]  Steven J. Zinkle,et al.  Destruction processes of large stacking fault tetrahedra induced by direct interaction with gliding dislocations , 2006 .

[14]  Ian M. Robertson,et al.  AnIn Situ transmission electron microscope deformation study of the slip transfer mechanisms in metals , 1990 .

[15]  A. Minor,et al.  A new view of the onset of plasticity during the nanoindentation of aluminium , 2006, Nature materials.

[16]  John C. Bean,et al.  A phenomenological description of strain relaxation in GexSi1−x/Si(100) heterostructures , 1989 .

[17]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[18]  V. Cosslett,et al.  High-Voltage Electron Microscopy , 1968, Quarterly Reviews of Biophysics.

[19]  D. C. Houghton,et al.  Strain relaxation kinetics in Si(1-x)Ge(x)/Si heterostructures , 1991 .

[20]  Ting Zhu,et al.  Atomistic mechanisms governing elastic limit and incipient plasticity in crystals , 2002, Nature.

[21]  Oliver Kraft,et al.  X-ray diffraction as a tool to study the mechanical behaviour of thin films , 2000 .

[22]  Marc Legros,et al.  In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation , 2006 .

[23]  R. Bullough,et al.  Stable configurations in strained epitaxial layers , 1992 .

[24]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[25]  Brian D. Wirth,et al.  Dislocation-obstacle interactions: Dynamic experiments to continuum modeling , 2005 .

[26]  John C. Bean,et al.  Nucleation of misfit dislocations in strained-layer epitaxy in the GexSi1−x/Si system , 1989 .

[27]  Huajian Gao,et al.  Crack-like grain-boundary diffusion wedges in thin metal films , 1999 .

[28]  Brian D. Wirth,et al.  Dislocation-Stacking Fault Tetrahedron Interactions in Cu , 2002 .

[29]  H.-J. Lee,et al.  Dynamic observations and atomistic simulations of dislocation–defect interactions in rapidly quenched copper and gold , 2006 .

[30]  F. Appel,et al.  Quantitative tensile-tilting stages for the high voltage electron microscope. , 1976, Ultramicroscopy.

[31]  William W. Gerberich,et al.  In situ deformation of silicon nanospheres , 2006 .

[32]  Eduard Arzt,et al.  Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films , 2003 .

[33]  Helmut Clemens,et al.  Mechanical Size‐Effects in Miniaturized and Bulk Materials , 2006 .

[34]  Andrew M. Minor,et al.  Strain-induced coarsening in nano-grained films , 2007 .

[35]  John C. Bean,et al.  Changes in electrical device characteristics during the in situ formation of dislocations , 1993 .

[36]  Nasr M. Ghoniem,et al.  3D dislocation dynamics study of plastic instability in irradiated copper , 2000 .

[37]  X. Baillin,et al.  Direct evidence of dislocation transmission through ∊= 9 grain boundaries in germanium and silicon by in situ high-voltage electron microscopy observations , 1990 .

[38]  Ian M. Robertson,et al.  In situ transmission electron microscopy observations of toughening mechanisms in ultra-fine grained columnar aluminum thin films , 2005 .

[39]  Uwe R. Kortshagen,et al.  Plasticity responses in ultra-small confined cubes and films , 2006 .

[40]  L. B. Freund,et al.  A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path , 1990 .

[41]  Petros Athanasios Sofronis,et al.  On the effect of hydrogen on plastic instabilities in metals , 2003 .

[42]  T. G. Nieh,et al.  In situ observation of deformation-induced interface migration in a fully-lamellar TiAl alloy , 1997 .

[43]  E. Butler,et al.  In situ experiments in the transmission electron microscope , 1979 .

[44]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[45]  Alain Jacques,et al.  Transformation of Slip Dislocations in Σ3 Grain Boundary , 2002 .

[46]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Saif,et al.  Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  William A. Curtin,et al.  An energy balance criterion for nanoindentation-induced single and multiple dislocation events , 2006 .

[49]  Ramnath Venkatraman,et al.  Mechanical properties and microstructural characterization of Al-0.5%Cu thin films , 1990 .

[50]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[51]  D. C. Houghton,et al.  “Barrierless” Misfit Dislocation Nucleation in SiGe/Si Strained Layer Epitaxy , 1992 .

[52]  Brian D. Wirth,et al.  In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper , 2003 .

[53]  John C. Bean,et al.  Variation in misfit dislocation behavior as a function of strain in the GeSi/Si system , 1989 .

[54]  Koji Maeda,et al.  Electronically enhanced kink motion on 30° partial dislocations in Ge directly observed by plan-view high resolution electron microscopy , 1998 .

[55]  Subra Suresh,et al.  Size effects on the mechanical properties of thin polycrystalline metal films on substrates , 2002 .

[56]  Ian M. Robertson,et al.  High-temperature dislocation-precipitate interactions in Al alloys: An in situ transmission electron microscopy deformation study , 2005 .

[57]  Ross,et al.  New mechanism for dislocation blocking in strained layer epitaxial growth , 2000, Physical review letters.

[58]  Nasr M. Ghoniem,et al.  Mechanisms of dislocation-defect interactions in irradiated metals investigated by computer simulations , 2002 .

[59]  Oliver Kraft,et al.  Channel cracking of β-NiAl thin films on Si substrates , 2004 .

[60]  Marc Legros,et al.  Plasticity-Related Phenomena in Metallic Films on Substrates , 2003 .

[61]  Taher A. Saif,et al.  Length Scale Effect on Deformation and Failure Mechanisms of Ultra-Fine Grained Aluminum , 2005 .

[62]  Shefford P. Baker,et al.  Plastic deformation and strength of materials in small dimensions , 2001 .

[63]  K. Schwarz,et al.  INTERACTION OF DISLOCATIONS ON CROSSED GLIDE PLANES IN A STRAINED EPITAXIAL LAYER , 1997 .

[64]  Bean,et al.  Activation barriers to strain relaxation in lattice-mismatched epitaxy. , 1989, Physical review. B, Condensed matter.

[65]  Jagannathan Rajagopalan,et al.  Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films , 2007, Science.

[66]  Yang Xiang,et al.  Level set simulations of dislocation-particle bypass mechanisms , 2004 .

[67]  W. W. Gerberich,et al.  Fracturing a nanoparticle , 2007 .

[68]  N. Lobontiu Mechanics of microelectromechanical systems , 2004 .

[69]  M. A. Haque,et al.  Microscale materials testing using MEMS actuators , 2001 .

[70]  Robert Hull,et al.  New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in‐situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers , 1993 .

[71]  Gerhard Dehm,et al.  In situ TEM observation of dislocation motion in thermally strained Al nanowires , 2002 .

[72]  Colin J. Humphreys,et al.  High voltage electron microscopy , 1973 .

[73]  R. H. Wagoner,et al.  The use of the transmission electron microscope in analyzing slip propagation across interfaces , 1989 .

[74]  B. Wirth,et al.  Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu , 2003 .

[75]  M. Benyoucef,et al.  In situ deformation experiments on a γ/γ′ superalloy Strengthening mechanisms , 1997 .

[76]  Ian M. Robertson,et al.  The effect of hydrogen on dislocation dynamics , 1999 .

[77]  Eduard Arzt,et al.  Parallel Glide: A Fundamentally Different Type of Dislocation Motion in Ultrathin Metal Films , 2003 .

[78]  James D. Plummer,et al.  Study of the effect of grain boundary migration on hillock formation in Al thin films , 2001 .

[79]  M. A. Haque,et al.  Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension , 2002 .

[80]  Ian M. Robertson,et al.  Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals , 2002 .

[81]  Spence,et al.  Observation of Moving Dislocation Kinks and Unpinning. , 1996, Physical review letters.

[82]  Ian M. Robertson,et al.  Controlled environment transmission electron microscopy , 1998, Microscopy research and technique.

[83]  Bernd Baufeld,et al.  High voltage electron microscopy in situ study on the plastic deformation of partially stabilized tetragonal zirconia , 1995 .

[84]  Hiroyasu Saka,et al.  Direct Measurement of Mobility of Edge and Screw Dislocations in 3% Silicon-Iron by High Voltage Transmission Electron Microscopy , 1972 .

[85]  John C. Bean,et al.  Interpretation of dislocation propagation velocities in strained GexSi1−x/Si(100) heterostructures by the diffusive kink pair model , 1991 .

[86]  H. Trinkaus,et al.  Radiation hardening revisited: role of intracascade clustering , 1997 .

[87]  Eduard Arzt,et al.  Small-scale plasticity in thin Cu and Al films , 2003 .

[88]  Yang Xiang,et al.  Dislocation climb effects on particle bypass mechanisms , 2006 .

[89]  D. B. Noble,et al.  Mechanisms and Kinetics of Misfit Dislocation Formation in Heteroepitaxial Thin Films , 1990 .

[90]  Joanne L. Murray,et al.  Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part I – Chemical compositions of Al3(Sc1−xZrx) precipitates , 2005 .

[91]  E. Orowan,et al.  Problems of plastic gliding , 1940 .

[92]  Dmitri Golberg,et al.  Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes , 2007 .

[93]  Eduard Arzt,et al.  In situ transmission electron microscopy study of dislocations in a polycrystalline Cu thin film constrained by a substrate , 2000 .

[94]  Ian M. Robertson,et al.  Interaction of dislocations with grain boundaries in Ni3Al , 1992 .

[95]  Petros Athanasios Sofronis,et al.  Modeling of hydrogen transport and elastically accommodated hydride formation near a crack tip , 1996 .