The Nevanlinna parametrization for q-Lommel polynomials in the indeterminate case

The Hamburger moment problem for the q -Lommel polynomials which are related to the Hahn-Exton q -Bessel function is known to be indeterminate for a certain range of parameters. In this paper, the Nevanlinna parametrization for the indeterminate case is provided in an explicit form. This makes it possible to describe all N-extremal measures of orthogonality. Moreover, a linear and a quadratic recurrence relation are derived for the moment sequence, and the asymptotic behavior of the moments for large powers is obtained with the aid of appropriate estimates.

[1]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[2]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[3]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[4]  F. Štampach,et al.  Orthogonal polynomials associated with Coulomb wave functions , 2014, 1403.8083.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Christian Berg,et al.  Density questions in the classical theory of moments , 1981 .

[7]  L. D. Abreu,et al.  THE ROOTS OF THE THIRD JACKSON q-BESSEL FUNCTION , 2003 .

[8]  H. Koelink,et al.  Some Basic Lommel Polynomials , 1999 .

[9]  Christian Berg,et al.  The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes , 1994 .

[10]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[11]  F. Olver Asymptotics and Special Functions , 1974 .

[12]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[13]  Mahmoud H. Annaby,et al.  On the zeros of the second and third Jackson q-Bessel functions and their associated q-Hankel transforms , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Christian Berg,et al.  Indeterminate moment problems and the theory of entire functions , 1995 .

[15]  J. Shohat,et al.  The problem of moments , 1943 .

[16]  C. Berg Markov's Theorem Revisited , 1994 .

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  Henrik L. Pedersen Stieltjes moment problems and the Friedrichs extension of a positive definite operator , 1995 .

[19]  A. Daalhuis Asymptotic expansions for $q$-gamma, $q$-exponential, and $q$-Bessel functions , 1994 .

[20]  Rene F. Swarttouw,et al.  On q-analogues of the Fourier and Hankel transforms , 2012, 1208.2521.

[21]  T. Chihara,et al.  On determinate Hamburger moment problems. , 1968 .

[22]  W. Assche,et al.  Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function , 1995 .

[23]  Yang Chen,et al.  Some Indeterminate Moment Problems and Freud-Like Weights , 1998 .

[24]  J. Letessier,et al.  Dual birth and death processes and orthogonal polynomials , 1986 .

[25]  Rene F. Swarttouw,et al.  On the Zeros of the Hahn-Exton q-Bessel Function and Associated q-Lommel Polynomials , 1994, math/9703215.

[26]  W. Assche The ratio of q-like orthogonal polynomials , 1987 .