Fabrication and characterization of cerium doped barium titanate/PMMA nanocomposites

Abstract The cerium doped barium titanate (BaTiO 3 :Ce)/poly methyl methacrylate(PMMA) polymer nano-composites (PNC) were successfully fabricated via solvent evaporation method with microwaves (2.4 GHz) heating. The X-ray diffraction measurements confirm the formation of barium titanate (BT) with crystallite size ranges from 55 to 62 nm. Differential scanning calorimetry study shows that the glass transition temperature ( T g ) directly affected by microwaves heat treatment and particle size of filler. The broadband dielectric spectroscopy was employed to investigate the frequency and temperature dependence of the dielectric properties of the nanocomposites in a frequency range from 75 kHz to 5 MHz and temperature range 80–400 K. The introduction of different BT fillers in PMMA enhance the dielectric constant of PNCs drastically and give a smooth response in frequency range mentioned above. The loss factor of the composite can be suppressed by using cerium doped barium titanate filler rather than pure barium titanate filler.

[1]  S. A. Ghany,et al.  Study of dielectric properties of particulate blends , 2000 .

[2]  M. El‐Mansy,et al.  Electrical conduction and dielectric properties of poly(methyl methacrylate)/perylene solar concentrators , 2003 .

[3]  S. S. Sekhon,et al.  Mixed fluoride ion conductors prepared by a mechanical milling technique: effect of grain size and strain on the ionic conductivity , 2001 .

[4]  F. Wu,et al.  Correction of zero shift in powder diffraction patterns using the reflection-pair method , 1999 .

[5]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[6]  Darko Makovec,et al.  Solid Solubility of Cerium in BaTiO3 , 1996 .

[7]  Vipul Bansal,et al.  Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. , 2006, Journal of the American Chemical Society.

[8]  D. Turnbull,et al.  Free‐Volume Model of the Amorphous Phase: Glass Transition , 1961 .

[9]  S. Pawar,et al.  Effect of zinc composition on properties on PEC cells based on sprayed Cd1−xZnxS films , 1983 .

[10]  F. Morrison,et al.  Electrical and structural characteristics of lanthanum-doped barium titanate ceramics , 1999 .

[11]  J. Won,et al.  Barium Titanate Nanoparticles with Diblock Copolymer Shielding Layers for High-Energy Density Nanocomposites , 2010 .

[12]  Stephen H. Foulger,et al.  Electrical properties of composites in the vicinity of the percolation threshold , 1999 .

[13]  D. Lu,et al.  Effects of Cerium Doping at Ti Sites and Europium Doping at Ba Sites on Dielectric Properties of BaTiO3 Ceramics1 , 2006 .

[14]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[15]  S. Wada,et al.  Effect of chelating agents on crystal structure of nm-sized barium titanate crystallites prepared using a LTDS method , 2000 .

[16]  P. M. Raole,et al.  Effect of ion beam irradiation on metal particle doped polymer composites , 2011 .

[17]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[18]  D. Sun,et al.  Investigation on FTIR spectra of barium calcium titanate ceramics , 2009 .

[19]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[20]  Jingshen Wu,et al.  The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend , 2000 .

[21]  Yihe Zhang,et al.  Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites , 2004 .

[22]  Xingyi Huang,et al.  Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer , 2011 .

[23]  Kyoichi Kinoshita,et al.  Grain‐size effects on dielectric properties in barium titanate ceramics , 1976 .

[24]  Okada,et al.  Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. , 1988, Physical review. B, Condensed matter.

[25]  J. van Turnhout,et al.  Thermally Stimulated Discharge of Polymer Electrets , 1971 .

[26]  D. Hennings,et al.  High-permittivity dielectric ceramics with high endurance , 1994 .

[27]  Z. Ye,et al.  Polyethylene Glycol-Based New Solution Route to Relaxor Ferroelectric 0.65Pb(Mg1/3Nb2/ 3)O3−0.35PbTiO3 , 2004 .

[28]  R. Newnham,et al.  Intrinsic Size Effects in a Barium Titanate Glass-Ceramic , 2005 .

[29]  F. Bloss Crystallography and Crystal Chemistry: An Introduction , 1989 .

[30]  V. Lemanov Phase transitions in SrTiO3 quantum paraelectric with impurities , 1999 .

[31]  Cheng Dong,et al.  POwderX: Windows-95-based program for powder X-ray diffraction data processing , 1999 .

[32]  F. Morrison,et al.  Novel doping mechanism for very-high-permittivity barium titanate ceramics , 2005 .

[33]  J. Nièpce,et al.  Synthesis reaction of metatitanate BaTiO3 , 1983 .