Analyzing Classifier Hierarchy Multiclassifier Learning

Classifier combination falls in the so called machine learning area. Its aim is to combine some classification paradigms in order to improve the individual accuracy of the component classifiers. Classifier hierarchies are an alternative among the several methods of classifier combination. In this paper we present new results about a recently proposed hierarchy construction method. Experiments have been carried out over 42 databases from the UCI repository, showing an improvement over the performance of the base classifiers.

[1]  Marvin Minsky,et al.  Steps toward Artificial Intelligence , 1995, Proceedings of the IRE.

[2]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[3]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[4]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[5]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[6]  Ron Kohavi,et al.  Data Mining Using MLC a Machine Learning Library in C++ , 1996, Int. J. Artif. Intell. Tools.

[7]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[8]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[9]  Basilio Sierra,et al.  Classifier hierarchy learning by means of genetic algorithms , 2006, Pattern Recognit. Lett..

[10]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[11]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[12]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[13]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Yi Lu,et al.  Knowledge integration in a multiple classifier system , 2004, Applied Intelligence.

[15]  João Gama,et al.  Combining classification algorithms , 2000 .