Blow-up dynamics for the aggregation equation with degenerate diffusion

[1]  Inwon C. Kim,et al.  Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion , 2011, SIAM J. Math. Anal..

[2]  Y. Huang,et al.  Asymptotics of blowup solutions for the aggregation equation , 2012 .

[3]  Yao Yao,et al.  The Patlak-Keller-Segel Model and Its Variations: Properties of Solutions via Maximum Principle , 2011, SIAM J. Math. Anal..

[4]  Ibrahim Fatkullin,et al.  A study of blow-ups in the Keller–Segel model of chemotaxis , 2010, 1006.4978.

[5]  Andrea Bertozzi,et al.  Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.

[6]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[7]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[8]  P. Lushnikov Critical chemotactic collapse , 2009, 0909.2690.

[9]  P. Laurençot,et al.  Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion , 2009, 0911.0835.

[10]  Yekaterina Epshteyn,et al.  Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model , 2009, J. Sci. Comput..

[11]  C. Schmeiser,et al.  Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System , 2009 .

[12]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[13]  Yekaterina Epshteyn,et al.  Discontinuous Galerkin methods for the chemotaxis and haptotaxis models , 2009 .

[14]  Alexander Kurganov,et al.  New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..

[15]  Nikos I. Kavallaris,et al.  Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak-Keller-Segel Model in a Disk , 2008, SIAM J. Math. Anal..

[16]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[17]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[18]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[19]  Norikazu Saito,et al.  Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis , 2007 .

[20]  Francis Filbet,et al.  A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.

[21]  Y. Sugiyama Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems , 2006, Differential and Integral Equations.

[22]  C. Sire,et al.  Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  C. Sire,et al.  Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Takashi Suzuki,et al.  Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis , 2005, Appl. Math. Comput..

[25]  R. Russell,et al.  Precise computations of chemotactic collapse using moving mesh methods , 2005 .

[26]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[27]  A. Marrocco,et al.  Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .

[28]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[29]  A. Marrocco 2D simulation of chemotactic bacteria aggregation , 2002 .

[30]  Leo P. Kadanoff,et al.  Diffusion, attraction and collapse , 1999 .

[31]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[32]  Andrea L. Bertozzi,et al.  Symmetric Singularity Formation in Lubrication-Type Equations for Interface Motion , 1996, SIAM J. Appl. Math..

[33]  Josephus Hulshof,et al.  Self-similar solutions of the second kind for the modified porous medium equation , 1994, European Journal of Applied Mathematics.

[34]  Yoshikazu Giga,et al.  Nondegeneracy of blowup for semilinear heat equations , 1989 .

[35]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[36]  W. Tobler Smooth pycnophylactic interpolation for geographical regions. , 1979, Journal of the American Statistical Association.

[37]  G. I. Barenblatt,et al.  Self-similar solutions of the second kind in nonlinear filtration: PMM vol. 33, n≗5, 1969, pp. 861–870 , 1969 .