Blow-up dynamics for the aggregation equation with degenerate diffusion
暂无分享,去创建一个
[1] Inwon C. Kim,et al. Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion , 2011, SIAM J. Math. Anal..
[2] Y. Huang,et al. Asymptotics of blowup solutions for the aggregation equation , 2012 .
[3] Yao Yao,et al. The Patlak-Keller-Segel Model and Its Variations: Properties of Solutions via Maximum Principle , 2011, SIAM J. Math. Anal..
[4] Ibrahim Fatkullin,et al. A study of blow-ups in the Keller–Segel model of chemotaxis , 2010, 1006.4978.
[5] Andrea Bertozzi,et al. Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.
[6] J. Vázquez,et al. Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.
[7] Andrea L. Bertozzi,et al. Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..
[8] P. Lushnikov. Critical chemotactic collapse , 2009, 0909.2690.
[9] P. Laurençot,et al. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion , 2009, 0911.0835.
[10] Yekaterina Epshteyn,et al. Fully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model , 2009, J. Sci. Comput..
[11] C. Schmeiser,et al. Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System , 2009 .
[12] Andrea L. Bertozzi,et al. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .
[13] Yekaterina Epshteyn,et al. Discontinuous Galerkin methods for the chemotaxis and haptotaxis models , 2009 .
[14] Alexander Kurganov,et al. New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..
[15] Nikos I. Kavallaris,et al. Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak-Keller-Segel Model in a Disk , 2008, SIAM J. Math. Anal..
[16] José A. Carrillo,et al. Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..
[17] J. Carrillo,et al. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.
[18] José A. Carrillo,et al. Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .
[19] Norikazu Saito,et al. Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis , 2007 .
[20] Francis Filbet,et al. A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.
[21] Y. Sugiyama. Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems , 2006, Differential and Integral Equations.
[22] C. Sire,et al. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] C. Sire,et al. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Takashi Suzuki,et al. Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis , 2005, Appl. Math. Comput..
[25] R. Russell,et al. Precise computations of chemotactic collapse using moving mesh methods , 2005 .
[26] Benoît Perthame,et al. Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .
[27] A. Marrocco,et al. Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .
[28] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[29] A. Marrocco. 2D simulation of chemotactic bacteria aggregation , 2002 .
[30] Leo P. Kadanoff,et al. Diffusion, attraction and collapse , 1999 .
[31] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[32] Andrea L. Bertozzi,et al. Symmetric Singularity Formation in Lubrication-Type Equations for Interface Motion , 1996, SIAM J. Appl. Math..
[33] Josephus Hulshof,et al. Self-similar solutions of the second kind for the modified porous medium equation , 1994, European Journal of Applied Mathematics.
[34] Yoshikazu Giga,et al. Nondegeneracy of blowup for semilinear heat equations , 1989 .
[35] Y. Giga,et al. Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .
[36] W. Tobler. Smooth pycnophylactic interpolation for geographical regions. , 1979, Journal of the American Statistical Association.
[37] G. I. Barenblatt,et al. Self-similar solutions of the second kind in nonlinear filtration: PMM vol. 33, n≗5, 1969, pp. 861–870 , 1969 .