Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability

In this paper, we consider the upper critical Choquard equation with a local perturbation

[1]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[2]  Jean Van Schaftingen,et al.  A guide to the Choquard equation , 2016, 1606.02158.

[3]  Changxing Miao,et al.  On the blow-up phenomenon for the mass-critical focusing Hartree equation in ℝ⁴ , 2007, 0708.2614.

[4]  J. Wilkins,et al.  PHYSICS OF MANY PARTICLE SYSTEMS. , 1969 .

[5]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[6]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[7]  S. I. Pekar,et al.  Untersuchungen über die Elektronentheorie der Kristalle , 1954 .

[8]  Juncheng Wei,et al.  Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities , 2021, Journal of Functional Analysis.

[9]  Jean Van Schaftingen,et al.  Existence of groundstates for a class of nonlinear Choquard equations , 2012, 1212.2027.

[10]  Xianhua Tang,et al.  Normalized solutions for Choquard equations with general nonlinearities , 2020, Electronic Research Archive.

[11]  Existence of stable standing waves for the Schrödinger–Choquard equation , 2018, Boundary Value Problems.

[12]  Minbo Yang,et al.  On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents , 2016, 1605.05038.

[13]  T. Ozawa Remarks on proofs of conservation laws for nonlinear Schrödinger equations , 2006 .

[14]  Jean Van Schaftingen,et al.  Symmetry of solutions of semilinear elliptic problems , 2008 .

[15]  Boling Guo,et al.  Strong instability of standing waves for a nonlocal Schrödinger equation , 2007 .

[16]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[17]  Shiwang Ma,et al.  Choquard equations with critical nonlinearities , 2018, Communications in Contemporary Mathematics.

[18]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[19]  N. Soave,et al.  Normalized ground states for the NLS equation with combined nonlinearities , 2019 .

[20]  Guang Zhang,et al.  Existence and qualitative properties of solutions for Choquard equations with a local term , 2019, Nonlinear Analysis: Real World Applications.

[21]  H. Ye Mass minimizers and concentration for nonlinear Choquard equations in $\R^N$ , 2015, 1502.01560.

[22]  Gong-bao Li,et al.  The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations , 2014 .

[23]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[24]  Elliott H. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[25]  C. Bonanno,et al.  Soliton dynamics for the generalized Choquard equation , 2013, 1310.3067.

[26]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Xiaoyutao Luo Normalized standing waves for the Hartree equations , 2019, Journal of Differential Equations.

[28]  Alexander Yu. Solynin,et al.  An approach to symmetrization via polarization , 1999 .

[29]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[30]  Liu Xinfu,et al.  EXISTENCE AND SYMMETRY OF NORMALIZED GROUND STATE TO CHOQUARD EQUATION WITH LOCAL PERTURBATION , 2021 .

[31]  Xinfu Li Global existence and blowup for Choquard equations with an inverse-square potential , 2019, Journal of Differential Equations.

[32]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[33]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[34]  T. Bartsch,et al.  Normalized solutions for a class of nonlinear Choquard equations , 2020, SN Partial Differential Equations and Applications.

[35]  Huxiao Luo Nontrivial solutions for nonlinear Schrödinger-Choquard equations with critical exponents , 2020, Appl. Math. Lett..

[36]  Binhua Feng,et al.  On the Cauchy problem for the Schrödinger-Hartree equation , 2015 .

[37]  L. Jeanjean Existence of solutions with prescribed norm for semilinear elliptic equations , 1997 .

[38]  Minbo Yang,et al.  The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation , 2016, 1604.00826.

[39]  Jean Van Schaftingen,et al.  Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics , 2012, 1205.6286.

[40]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[41]  N. Soave,et al.  Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case , 2018, Journal of Functional Analysis.