Newton’s Method for the Computation of k-Eigenvalues in SN Transport Applications
暂无分享,去创建一个
Jeffery D. Densmore | James S. Warsa | Yousry Y. Azmy | D. F. Gill | Daniel F. Gill | Y. Azmy | J. Warsa | J. Densmore
[1] Kord Smith,et al. APPLICATION OF THE JACOBIAN-FREE NEWTON-KRYLOV METHOD IN COMPUTATIONAL REACTOR PHYSICS , 2009 .
[2] D. F. Gill,et al. Jacobian-Free Newton-Krylov as an Alternative to Power Iterations for the k-Eigenvalue Transport Problem , 2009 .
[3] Kord Smith,et al. Application of the Jacobian-Free Newton-Krylov Method to Nonlinear Acceleration of Transport Source Iteration in Slab Geometry , 2011 .
[4] D. F. Gill,et al. Newton -Krylov methods for the solution of the k-eigenvalue problem in multigroup neutronics calculations , 2009 .
[5] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[6] Hengbin An,et al. A choice of forcing terms in inexact Newton method , 2007 .
[7] Yousry Y. Azmy,et al. Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory , 2011 .
[8] R. A. Forster,et al. Analytical Benchmark Test Set for Criticality Code Verification , 1999 .
[9] Danny Lathouwers,et al. Iterative computation of time-eigenvalues of the neutron transport equation , 2003 .
[10] Optimal perturbation size for matrix free Newton/Krylov methods , 2007 .
[11] Y. Y. Azmy,et al. A JACOBIAN-FREE NEWTON-KRYLOV ITERATIVE SCHEME FOR CRITICALITY CALCULATIONS BASED ON THE NEUTRON DIFFUSION EQUATION , 2009 .
[12] Homer F. Walker,et al. Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..
[13] Richard B. Lehoucq,et al. Krylov Subspace Iterations for Deterministic k-Eigenvalue Calculations , 2004 .
[14] L. B. Rall,et al. The solution of characteristic value-vector problems by Newton's method , 1968 .
[15] Avneet Sood,et al. Analytical benchmark test set for criticality code verification , 2003 .
[16] D. A. Knoll,et al. Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method , 2011 .
[17] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .