Optimal Exponential Synchronization of Chaotic Systems with Multiple Time Delays via Fuzzy Control

This study presents an effective approach to realize the optimal <path id="x1D43B" d="M865 650q-1 -4 -4 -14t-4 -14q-62 -5 -77 -19.5t-29 -82.5l-74 -394q-12 -61 -0.5 -77t75.5 -21l-6 -28h-273l8 28q64 5 82 21t29 76l36 198h-380l-37 -197q-11 -64 0.5 -78.5t79.5 -19.5l-6 -28h-268l6 28q60 6 75.5 21.5t26.5 76.5l75 394q13 66 2 81.5t-77 20.5l8 28 h263l-6 -28q-58 -5 -75.5 -21t-30.5 -81l-26 -153h377l29 153q12 67 2 81t-74 21l5 28h268z" /> <path id="x221E" d="M983 225q0 -112 -67 -174.5t-150 -62.5q-91 0 -154.5 43.5t-113.5 129.5q-49 -85 -104 -129t-138 -44q-98 0 -158.5 66t-60.5 154q0 59 21 106.5t54.5 75.5t70.5 43t73 15q90 0 152.5 -43.5t112.5 -128.5q48 84 104.5 128t140.5 44q93 0 155 -65t62 -158zM478 196 q-27 49 -47 80t-50 67t-64 54t-73 18q-48 0 -81.5 -47t-33.5 -128q0 -96 37.5 -157.5t99.5 -61.5q68 0 117.5 47t94.5 128zM889 204q0 91 -35.5 151t-99.5 60q-68 0 -119 -47t-95 -127q27 -49 47 -80.5t50 -67.5t65 -54t74 -18q113 0 113 183z" /> exponential synchronization of multiple time-delay chaotic (MTDC) systems. First, a neural network (NN) model is employed to approximate the MTDC system. Then, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method to ensure that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Based on the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level. Finally, a numerical example with simulations is provided to illustrate the concepts discussed throughout this work.

[1]  Heng-Hui Chen,et al.  Chaos synchronization between two different chaotic systems via nonlinear feedback control , 2009 .

[2]  Wen-June Wang,et al.  Stabilising controller and observer synthesis for uncertain large-scale systems by the Riccati equation approach , 1992 .

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  Bor-Sen Chen,et al.  Robustness design of nonlinear dynamic systems via fuzzy linear control , 1999, IEEE Trans. Fuzzy Syst..

[5]  Hamid Reza Karimi,et al.  New Delay-Dependent Exponential $H_{\infty}$ Synchronization for Uncertain Neural Networks With Mixed Time Delays , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Zongli Lin,et al.  Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation , 2003, IEEE Trans. Fuzzy Syst..

[7]  Meiqin Liu,et al.  Optimal exponential synchronization of general chaotic delayed neural networks: An LMI approach , 2009, Neural Networks.

[8]  Bor-Sen Chen,et al.  Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach , 2000, IEEE Trans. Fuzzy Syst..

[9]  Hongjie Yu,et al.  Chaotic synchronization based on stability criterion of linear systems , 2003 .

[10]  Kazuo Tanaka,et al.  Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[11]  G. Rangarajan,et al.  Stability of synchronized chaos in coupled dynamical systems , 2002, nlin/0201037.

[12]  Pi-Cheng Tung,et al.  A new method for chaos control in communication systems , 2009 .

[13]  Bor-Sen Chen,et al.  Robust $H_{\infty}$ Synchronization Design of Nonlinear Coupled Network via Fuzzy Interpolation Method , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  L. FradkovA.,et al.  Control of Chaos , 2004 .

[15]  Ying-Jen Chen,et al.  H∞ synchronization of fuzzy model based Chen chaotic systems , 2010, 2010 IEEE International Conference on Control Applications.

[16]  Yong-Yan Cao,et al.  Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems , 2000, IEEE Trans. Fuzzy Syst..

[17]  Kiriakos Kiriakidis,et al.  Fuzzy model-based control of complex plants , 1998, IEEE Trans. Fuzzy Syst..

[18]  Hak-Keung Lam,et al.  Stability Analysis of Interval Type-2 Fuzzy-Model-Based Control Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  E. Kim,et al.  Adaptive Synchronization of Uncertain Chaotic Systems Based on T–S Fuzzy Model , 2007, IEEE Transactions on Fuzzy Systems.

[20]  Krishnendu Chakrabarty,et al.  Control of chaos in DC-DC converters , 1998 .

[21]  Wen-June Wang,et al.  An improved stability criterion for T-S fuzzy discrete systems via vertex expression , 2005, IEEE Trans. Syst. Man Cybern. Part B.

[22]  J. Si,et al.  Neural network-based control design: an LMI approach , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[23]  Chih-Min Lin,et al.  CMAC-based adaptive backstepping synchronization of uncertain chaotic systems , 2009 .

[24]  Ruihong Li,et al.  Synchronization of two different chaotic systems with unknown parameters , 2007 .

[25]  Cristiano Cervellera,et al.  Design of Asymptotic Estimators: An Approach Based on Neural Networks and Nonlinear Programming , 2007, IEEE Transactions on Neural Networks.

[26]  T. Liao,et al.  H∞ synchronization of chaotic systems using output feedback control design , 2007 .

[27]  Huijun Gao,et al.  New Delay-Dependent Exponential H ∞ Synchronization for Uncertain Neural Networks With Mixed Time Delays , 2009 .

[28]  Yeong-Jeu Sun,et al.  Exponential synchronization between two classes of chaotic systems , 2009 .

[29]  Carine Jauberthie,et al.  Identifiability of a nonlinear delayed-differential aerospace model , 2006, IEEE Transactions on Automatic Control.

[30]  Bor-Sen Chen,et al.  Mixed Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach , 2000 .

[31]  Her-Terng Yau,et al.  Chaos synchronization of different chaotic systems subjected to input nonlinearity , 2008, Appl. Math. Comput..

[32]  Kazuo Tanaka,et al.  A multiple Lyapunov function approach to stabilization of fuzzy control systems , 2003, IEEE Trans. Fuzzy Syst..

[33]  Aydogan Savran,et al.  Multifeedback-Layer Neural Network , 2007, IEEE Transactions on Neural Networks.

[34]  Sheng-Dong Xu,et al.  Robustness Design of Fuzzy Control for Nonlinear Multiple Time-Delay Large-Scale Systems via Neural-Network-Based Approach , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  K. Teo,et al.  A class of optimal state-delay control problems , 2013 .

[36]  Arkadi Nemirovski,et al.  Lmi Control Toolbox For Use With Matlab , 2014 .

[37]  Tsu-Tian Lee,et al.  Neural-network-based optimal fuzzy controller design for nonlinear systems , 2005, Fuzzy Sets Syst..

[38]  Hajime Takakubo,et al.  Observation and analysis of chaos with digitalizing measure in a CMOS mapping system , 1996 .

[39]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[40]  Kok Lay Teo,et al.  Optimal control problems arising in the zinc sulphate electrolyte purification process , 2012, J. Glob. Optim..

[41]  Warren E. Dixon,et al.  Composite adaptation for neural network-based controllers , 2010, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[42]  Stanislaw Jankowski,et al.  Synchronization and control in a cellular neural network of chaotic units by local pinnings , 1996 .

[43]  K. Teo,et al.  A unified parameter identification method for nonlinear time-delay systems , 2013 .

[44]  Tung-Kuan Liu,et al.  Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm , 2006, IEEE Trans. Neural Networks.

[45]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[46]  Kok Lay Teo,et al.  Time-delay estimation for nonlinear systems with piecewise-constant input , 2013, Appl. Math. Comput..

[47]  Kok Lay Teo,et al.  An Optimization Approach to State-Delay Identification $ $ , 2010, IEEE Transactions on Automatic Control.

[48]  Hak-Keung Lam,et al.  Synchronization of Chaotic Systems Using Time-Delayed Fuzzy State-Feedback Controller , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  Meikang Qiu,et al.  Exponential ${\rm H}_{\infty}$ Synchronization of General Discrete-Time Chaotic Neural Networks With or Without Time Delays , 2010, IEEE Transactions on Neural Networks.

[50]  Hamid Reza Karimi,et al.  Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks , 2009 .

[51]  Sung Tae Jung,et al.  Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance , 2010 .

[52]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[53]  Guanrong Chen,et al.  Global Synchronization of Coupled Delayed Neural Networks and Applications to Chaotic CNN Models , 2004, Int. J. Bifurc. Chaos.

[54]  Hua O. Wang,et al.  Bifurcation control of a chaotic system , 1995, Autom..