Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica

[1]  Suo-min Wang,et al.  The ZxNHX gene encoding tonoplast Na(+)/H(+) antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. , 2011, Journal of plant physiology.

[2]  H. Zhou,et al.  Expression of RNA-Interference/Antisense Transgenes by the Cognate Promoters of Target Genes Is a Better Gene-Silencing Strategy to Study Gene Functions in Rice , 2011, PloS one.

[3]  D. T. Britto,et al.  Sodium transport in plants: a critical review. , 2011, The New phytologist.

[4]  P. Agarwal,et al.  Cloning and characterization of the Salicorniabrachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress , 2011, Molecular Biology Reports.

[5]  Fuchun Zhang,et al.  Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica , 2011, Molecular Biology Reports.

[6]  L. Yin,et al.  The influences on the fluctuations of Karelinia caspica community under surface water-overflowing disturbance, western China , 2010, 2010 Second IITA International Conference on Geoscience and Remote Sensing.

[7]  Yoshiyuki Tanaka,et al.  Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes , 2010, Planta.

[8]  H. Gerós,et al.  Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. , 2009, Journal of experimental botany.

[9]  Z. Haiyan,et al.  Comparison of salt-tolerance and drought-tolerance of two desert plants (Karelinia caspica and Suaeda turkestanica Litw.) in Tarim. , 2009 .

[10]  C. Zheng,et al.  Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions , 2009, Acta Physiologiae Plantarum.

[11]  Qing Yang,et al.  Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. , 2009, Molecular plant.

[12]  T. Cuin,et al.  Potassium transport and plant salt tolerance. , 2008, Physiologia plantarum.

[13]  Ji Ma,et al.  Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco , 2008, Plant Cell Reports.

[14]  罗琰,et al.  紫花苜蓿Na^+/H^+逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性 , 2008 .

[15]  X. Zhang,et al.  Expression of a Vacuolar Na+/H+ Antiporter Gene of Alfalfa Enhances Salinity Tolerance in Transgenic Arabidopsis , 2008 .

[16]  Y. Zhu,et al.  Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference , 2008 .

[17]  Xiaomin Wang,et al.  Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. , 2008, Journal of plant physiology.

[18]  Q. Su,et al.  Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis. , 2008, Plant physiology and biochemistry : PPB.

[19]  H. Shou,et al.  Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species , 2008, Journal of Zhejiang University SCIENCE B.

[20]  H. Cho,et al.  Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. , 2007, Biochemical and biophysical research communications.

[21]  E. Blumwald,et al.  Na+ transport in plants , 2007, FEBS letters.

[22]  Jianhua Zhu,et al.  An Enhancer Mutant of Arabidopsis salt overly sensitive 3 Mediates both Ion Homeostasis and the Oxidative Stress Response , 2007, Molecular and Cellular Biology.

[23]  Wei Li,et al.  Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants , 2007, Plant Cell Reports.

[24]  I. Small RNAi for revealing and engineering plant gene functions. , 2007, Current opinion in biotechnology.

[25]  I. Mezghani,et al.  Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. , 2006, Journal of experimental botany.

[26]  Xiangjun Zhou,et al.  Use of RNA interference to dissect defense-signaling pathways in rice. , 2007, Methods in molecular biology.

[27]  Narendra Tuteja,et al.  Mechanisms of high salinity tolerance in plants. , 2007, Methods in enzymology.

[28]  R. Stipanovic,et al.  Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol , 2006, Proceedings of the National Academy of Sciences.

[29]  M. Hussain,et al.  Engineering novel traits in plants through RNA interference. , 2006, Trends in plant science.

[30]  Olivier Voinnet,et al.  The diversity of RNA silencing pathways in plants. , 2006, Trends in genetics : TIG.

[31]  Detlef Weigel,et al.  Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis[W][OA] , 2006, The Plant Cell Online.

[32]  K. Masmoudi,et al.  Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. , 2005, Plant physiology and biochemistry : PPB.

[33]  S. Iida,et al.  Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. , 2005, Plant & cell physiology.

[34]  C. Zheng,et al.  The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. , 2004, Plant & cell physiology.

[35]  Shili Duan,et al.  Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana , 2003, Plant and Soil.

[36]  Jia Lei Studies of desalting ability and desalting structure in Karelinia caspica , 2004 .

[37]  Z. Peng,et al.  Consensus-derived structural determinants of the ankyrin repeat motif , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Qing Liu,et al.  hpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing , 2002, Plant Physiology.

[39]  S. Yokoi,et al.  Differential Expression and Function of Arabidopsis Thaliana Antiporters in the Salt Stress Response , 2002 .

[40]  P. Waterhouse,et al.  Construct design for efficient, effective and high-throughput gene silencing in plants. , 2001, The Plant journal : for cell and molecular biology.

[41]  S. Iida,et al.  Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. , 2001, Plant & cell physiology.

[42]  H. Bohnert,et al.  PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY. , 2000, Annual review of plant physiology and plant molecular biology.

[43]  E. Blumwald,et al.  Sodium transport in plant cells. , 2000, Biochimica et biophysica acta.

[44]  W. Snedden,et al.  Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. , 1999, Science.

[45]  Yoshiyuki Tanaka,et al.  Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. , 1999, Biochimica et Biophysica Acta.

[46]  G. Fink,et al.  The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Dizengremel,et al.  Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species , 1998, Trees.

[48]  S. Grinstein,et al.  Na+/H+ Exchangers of Mammalian Cells* , 1997, The Journal of Biological Chemistry.

[49]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[50]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .