A new perspective for the numerical solution of the Modified Equal Width wave equation

[1]  J. Vahidi,et al.  Exact solutions of nonlinear evolution equations by using the modified simple equation method , 2012 .

[2]  Lin Jin Analytical Approach to the Modified Equal Width Equation , 2009 .

[3]  A. Paoli,et al.  Is There Any Practical Application of Meta-Analytical Results in Strength Training? , 2017, Front. Physiol..

[5]  Weiguo Rui,et al.  Integral Bifurcation Method and Its Application for Solving the Modified Equal Width Wave Equation and Its Variants , 2007 .

[6]  Subdomain finite element method with quartic B-splines for the modified equal width wave equation , 2015 .

[7]  T. Geyikli,et al.  Petrov-Galerkin method with cubic B-splines for solving the MEW equation , 2012 .

[8]  Multigrid Method for the Numerical Solution of the Modified Equal Width Wave Equation , 2016 .

[9]  Syed Tauseef Mohyud-Din,et al.  Numerical Solution of Modified Equal Width Wave Equation , 2010 .

[10]  Bülent Saka,et al.  Algorithms for numerical solution of the modified equal width wave equation using collocation method , 2007, Math. Comput. Model..

[11]  Ihsan Celikkaya Operator splitting method for numerical solution of modified equal width equation , 2019, Tbilisi Mathematical Journal.

[12]  Dumitru Baleanu,et al.  Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept , 2021 .

[13]  D. Baleanu,et al.  A New Iterative Method for the Numerical Solution of High-Order Non-linear Fractional Boundary Value Problems , 2020, Frontiers in Physics.

[14]  Samaneh Sadat Sajjadi,et al.  A new adaptive synchronization and hyperchaos control of a biological snap oscillator , 2020 .

[15]  Dumitru Baleanu,et al.  Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator , 2021, Computers, Materials & Continua.

[16]  James D. Meiss,et al.  SCATTERING OF REGULARIZED-LONG-WAVE SOLITARY WAVES , 1984 .

[17]  Peter J. Olver,et al.  Euler operators and conservation laws of the BBM equation , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Yilmaz Dereli,et al.  Radial basis functions method for numerical solution of the modified equal width equation , 2010, Int. J. Comput. Math..

[19]  Ali Başhan An effective application of differential quadrature method based on modified cubic B-splines to numerical solutions of the KdV equation , 2018 .

[20]  Junfeng Lu,et al.  He’s variational iteration method for the modified equal width equation , 2009 .

[21]  S. Zaki Solitary wave interactions for the modified equal width equation , 2000 .

[22]  Y. Uçar,et al.  A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation , 2018 .

[23]  Bisharat Rasool Memon,et al.  Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan , 2020, European physical journal plus.

[24]  S. Kutluay,et al.  Solitary wave solutions of the modified equal width wave equation , 2008 .

[25]  Kamal R. Raslan Collocation method using cubic B-spline for the generalised equal width equation , 2006, Int. J. Simul. Process. Model..

[27]  Ali Başhan An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method , 2019, Mediterranean Journal of Mathematics.

[28]  D. Baleanu,et al.  On the fractional optimal control problems with a general derivative operator , 2019, Asian Journal of Control.

[29]  Dumitru Baleanu,et al.  On an accurate discretization of a variable-order fractional reaction-diffusion equation , 2019, Commun. Nonlinear Sci. Numer. Simul..

[30]  R. Bellman,et al.  DIFFERENTIAL QUADRATURE: A TECHNIQUE FOR THE RAPID SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 1972 .

[31]  D. Baleanu,et al.  Planar System-Masses in an Equilateral Triangle: Numerical Study within Fractional Calculus , 2020, Computer Modeling in Engineering & Sciences.

[33]  S. S. Sajjadi,et al.  The fractional features of a harmonic oscillator with position-dependent mass , 2020, Communications in Theoretical Physics.

[34]  D. Baleanu,et al.  Regularity results for fractional diffusion equations involving fractional derivative with Mittag–Leffler kernel , 2020, Mathematical Methods in the Applied Sciences.

[35]  Alaattin Esen,et al.  A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines , 2006, Int. J. Comput. Math..

[36]  David J. Evans,et al.  Solitary waves for the generalized equal width (GEW) equation , 2005, Int. J. Comput. Math..

[37]  Mohd. Salmi Md. Noorani,et al.  Application of the (-expansion method for the generalized Fisher‘s equation and modified equal width equation , 2014 .

[38]  Ali Bashan,et al.  A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method , 2019, Appl. Math. Comput..

[39]  Y. Uçar,et al.  An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method , 2017 .

[40]  Aly R. Seadawy,et al.  Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications , 2018, Results in Physics.

[41]  Dumitru Baleanu,et al.  Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation , 2018, Appl. Math. Comput..

[42]  Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator , 2020 .

[43]  A. Wazwaz THE TANH AND THE SINE–COSINE METHODS FOR A RELIABLE TREATMENT OF THE MODIFIED EQUAL WIDTH EQUATION AND ITS VARIANTS , 2006 .

[44]  Y. Uçar,et al.  A new perspective for the numerical solutions of the cmKdV equation via modified cubic B-spline differential quadrature method , 2018, International Journal of Modern Physics C.

[45]  Donal O'Regan,et al.  Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data , 2020, J. Comput. Appl. Math..

[46]  Bisharat Rasool Memon,et al.  Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study , 2021, Chaos, Solitons & Fractals.

[47]  H. Rezazadeh,et al.  Application of Modified Extended Tanh Technique for solving Complex Ginzburg-Landau Equation considering Kerr Law Nonlinearity , 2021, Computers, Materials & Continua.

[48]  Hanquan Wang,et al.  Exact travelling wave solutions of the modified equal width equation via the dynamical system method , 2016 .