Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC

We provide Markov chain Monte Carlo (MCMC) algorithms for computing the bandwidth matrix for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters to be estimated, which we do by optimizing the likelihood cross-validation criterion. Numerical results show that the resulting bandwidths are superior to all existing methods; for dimensions greater than two, our algorithm is the first practical method for estimating the optimal bandwidth matrix. Moreover, the MCMC algorithm for bandwidth selection for multivariate data has no increased difficulty as the dimension of data increases.

[1]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[2]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[3]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[4]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[5]  M. Hazelton,et al.  Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .

[6]  Y. Tse,et al.  Estimation of Hyperbolic Diffusion using MCMC Method , 2002 .

[7]  Mark J. Brewer,et al.  A Bayesian model for local smoothing in kernel density estimation , 2000, Stat. Comput..

[8]  Chris Jones,et al.  A skew t distribution , 2000 .

[9]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[10]  Luc Bauwens,et al.  Bayesian Inference on GARCH Models Using the Gibbs Sampler , 1998 .

[11]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[12]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[13]  Richard Stanton A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk , 1997 .

[14]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[15]  D. W. Scott,et al.  On Locally Adaptive Density Estimation , 1996 .

[16]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[17]  Yacine Aït-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1996 .

[18]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[19]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[20]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[21]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[22]  D. W. Scott,et al.  Cross-Validation of Multivariate Densities , 1994 .

[23]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[24]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[25]  A. Izenman Recent Developments in Nonparametric Density Estimation , 1991 .

[26]  James Stephen Marron,et al.  A Comparison of Cross-Validation Techniques in Density Estimation , 1987 .

[27]  Ian Abramson On Bandwidth Variation in Kernel Estimates-A Square Root Law , 1982 .

[28]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[29]  Stephen G. Donald INFERENCE CONCERNING THE NUMBER OF FACTORS IN A MULTIVARIATE NONPARAMETRIC RELATIONSHIP , 1997 .

[30]  Rob J Hyndman,et al.  Computing and Graphing Highest Density Regions , 1996 .

[31]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[32]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[33]  M. Wand,et al.  Multivariate plug-in bandwidth selection , 1994 .

[34]  E. F. Schuster,et al.  On the Nonconsistency of Maximum Likelihood Nonparametric Density Estimators , 1981 .