A compact color descriptor for image retrieval

The resource usage in Content-Based Image Retrieval is a frequently neglected issue. This paper describes a novel compact feature vector based on image color histograms in the HSL color space. The images are represented using only 10 bytes per image. It is shown that, in the context of Query-by-Example (QbE) usage scenarios, the method described achieves retrieval performance close to the state of the art image retrieval methods that use considerably more memory. It is also shown that the described method outperforms other methods with similar memory usage.

[1]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Lai-Man Po,et al.  A Compact and Efficient Color Descriptor for Image Retrieval , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[3]  Gerald Schaefer,et al.  CVPIC Colour/Shape Histograms for Compressed Domain Image Retrieval , 2004, DAGM-Symposium.

[4]  Yiannis S. Boutalis,et al.  FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[5]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[6]  Vedran Ljubovic,et al.  Comparative study of color histograms as global feature for Image Retrieval , 2013, 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[7]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[8]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[9]  Bo Li,et al.  An Improving Technique of Color Histogram in Segmentation-based Image Retrieval , 2009, 2009 Fifth International Conference on Information Assurance and Security.

[10]  Vedran Ljubovic,et al.  Issue of resource usage in content-based image retrieval algorithms , 2012, 2012 IX International Symposium on Telecommunications (BIHTEL).

[11]  Antonios Gasteratos,et al.  Image retrieval based on fuzzy color histogram processing , 2005 .

[12]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[13]  Thorsten Joachims,et al.  In Google We Trust: Users' Decisions on Rank, Position, and Relevance , 2007, J. Comput. Mediat. Commun..

[14]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[15]  Yiannis S. Boutalis,et al.  Accurate Image Retrieval Based on Compact Composite Descriptors and Relevance Feedback Information , 2010, Int. J. Pattern Recognit. Artif. Intell..

[16]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[17]  Shamik Sural,et al.  Segmentation and histogram generation using the HSV color space for image retrieval , 2002, Proceedings. International Conference on Image Processing.

[18]  Chong-Wah Ngo,et al.  Exploiting image indexing techniques in DCT domain , 2001, Pattern Recognit..

[19]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.