An age-dependent population model with nonlinear diffusion in R n

[1]  D. Aronson,et al.  Regularity Properties of Flows Through Porous Media: A Counterexample , 1970 .

[2]  Avner Friedman,et al.  Regularity of the free boundary of a gas flow in an n-dimensional porous medium. , 1980 .

[3]  Morton E. Gurtin,et al.  Some simple models for nonlinear age-dependent population dynamics , 1979 .

[4]  A. Friedman,et al.  Addendum to “Holder estimates for nonlinear degenerate parabolic Systems”. , 1985 .

[5]  G. E. Hernández Dynamics of populations with age-difference and diffusion: localization. , 1988, Applicable analysis.

[6]  G. E. Hernández Anticrowding population models in several space variables , 1991 .

[7]  Tanya Kostova,et al.  Nonlinear age-dependent population dynamics with constant size , 1991 .

[8]  O. Oleinik,et al.  QUASI-LINEAR SECOND-ORDER PARABOLIC EQUATIONS WITH MANY INDEPENDENT VARIABLES , 1961 .

[9]  M. Gurtin Some questions and open problems in continuum mechanics and population dynamics , 1983 .

[10]  Avner Friedman,et al.  Regularity of solutions of nonlinear degenerate parabolic systems. , 1984 .

[11]  Avner Friedman,et al.  Continuity of the density of a gas flow in a porous medium , 1979 .

[12]  Morton E. Gurtin,et al.  Diffusion models for age-structured populations , 1981 .

[13]  R. MacCamy,et al.  A population model with nonlinear diffusion , 1981 .

[14]  Gastón E. Hernández,et al.  Existence of solutions in a population dynamics problem , 1986 .

[15]  R. E. Pattle DIFFUSION FROM AN INSTANTANEOUS POINT SOURCE WITH A CONCENTRATION-DEPENDENT COEFFICIENT , 1959 .