Carbonation of calcium sulfoaluminate mortars

Abstract This study investigated potential physical and chemical parameters that could govern the carbonation rate of calcium sulfoaluminate (CSA) mortars and endeavored to elucidate the microstructural and chemical factors that govern CSA cement's carbonation rate. Experiments included: water absorption, oxygen diffusion, mercury intrusion porosimetry, quantitative X-ray diffraction, thermogravimetric analysis, accelerated carbonation, compression and flexure tests. Additionally, the carbonation process was investigated using thermodynamic modeling. The results show that CSA mortars carbonate much faster than Portland cement mortars and at approximately the same rate as calcium aluminate cement mortars. Additionally, CSA mortars carbonate slower with decreasing w/c, and the anhydrite content of the CSA mortars strongly affects the ye'elimite reaction kinetics which plays an important role in imparting carbonation resistance in CSA mortars. Finally, calcium sulfate additions to CSA clinker to produce CSA cement dilutes the clinker content and reduces the amount of CO 2 that the CSA cement can ultimately bind.

[1]  Fulvio Canonico,et al.  High-performance and low-CO2 cements based on calcium sulphoaluminate , 2010 .

[2]  C. W. Richards,et al.  Effects of the particle sizes of expansive clinker on strength-expansion characteristics of type K expansive cements , 1982 .

[3]  G. Saoût,et al.  Application of the Rietveld method to the analysis of anhydrous cement , 2011 .

[4]  K. Mahboub,et al.  Observations of Peak Strength Behavior in CSA Cement Mortars , 2013 .

[5]  F. Winnefeld,et al.  Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker , 2009 .

[6]  Paulo J.M. Monteiro,et al.  Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, ) in the presence of gypsum and varying amounts of calcium hydroxide , 2013 .

[7]  L. Santoro,et al.  Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate , 1995 .

[8]  Milena Marroccoli,et al.  The influence of C4A3S̄ content and ratio on the performance of calcium sulfoaluminate-based cements , 1996 .

[9]  Frank Winnefeld,et al.  Calcium Sulfoaluminate Sodalite (Ca4Al6O12SO4) Crystal Structure Evaluation and Bulk Modulus Determination , 2014 .

[10]  Liang Zhang,et al.  Development of the use of sulfo- and ferroaluminate cements in China , 1999 .

[11]  Darrell Kirk Nordstrom,et al.  Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems , 2005 .

[12]  M. Juenger,et al.  Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase compositions , 2011 .

[13]  Kevin Paine,et al.  Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement , 2014 .

[14]  M. Pace,et al.  A hydration study of various calcium sulfoaluminate cements , 2014 .

[15]  Graziella Bernardo,et al.  A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages , 2006 .

[16]  M. García-Maté,et al.  Hydration studies of calcium sulfoaluminate cements blended with fly ash , 2013 .

[17]  Fredrik P. Glasser,et al.  Investigation Of The Microstructure And Carbonation Of CSA-Based Concretes Removed From Service , 2005 .

[18]  Wei Chen,et al.  Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete , 2013 .

[19]  K. Mahboub,et al.  INFLUENCE OF LATEX POLYMER ADDITION ON THE BEHAVIOR OF MATERIALS CONTAINING CSA CEMENT CURED AT LOW HUMIDITY , 2013 .

[20]  Wenpei Hu,et al.  Durability and microstructure of CSA cement-based materials from MSWI fly ash , 2014 .

[21]  J. Kaufmann Pore space analysis of cement-based materials by combined Nitrogen sorption – Wood’s metal impregnation and multi-cycle mercury intrusion , 2010 .

[22]  F. J. Pearson,et al.  Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002 .

[23]  M. Juenger,et al.  Understanding expansion in calcium sulfoaluminate–belite cements , 2012 .

[24]  Ionel Michael Navon,et al.  VARIATM—A FORTRAN program for objective analysis of pseudostress wind fields using large-scale conjugate-gradient minimization , 1991 .

[25]  M. García-Maté,et al.  Rietveld quantitative phase analysis of Yeelimite-containing cements , 2012 .

[26]  Horst-Michael Ludwig,et al.  Research review of cement clinker chemistry , 2015 .

[27]  Dmitrii A. Kulik,et al.  GEM-SELEKTOR GEOCHEMICAL MODELING PACKAGE: TSolMod LIBRARY AND DATA INTERFACE FOR MULTICOMPONENT PHASE MODELS , 2012 .

[28]  André Lecomte,et al.  Sulfoaluminate cement behaviours in carbon dioxide, warm and moist environments , 2014 .

[29]  Kevin Paine,et al.  Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly ash cement , 2015 .

[30]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[31]  B. Lothenbach,et al.  Stability in the system CaO–Al2O3–H2O , 2012 .

[32]  F. Winnefeld,et al.  Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite , 2010 .

[33]  H. Hirao,et al.  A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete , 2015 .

[34]  F. Glasser,et al.  High-performance cement matrices based on calcium sulfoaluminate–belite compositions , 2001 .

[35]  V. Zivica,et al.  Properties of blended sulfoaluminate belite cement , 2000 .

[36]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[37]  Milena Marroccoli,et al.  Use of industrial byproducts as alumina sources for the synthesis of calcium sulfoaluminate cements. , 2011, Environmental science & technology.

[38]  Xin Cheng,et al.  Carbonation resistance of sulphoaluminate cement-based high performance concrete , 2009 .

[39]  Frank Winnefeld,et al.  Beneficial use of limestone filler with calcium sulphoaluminate cement , 2012 .

[40]  A. Whittaker,et al.  Structure of calcium aluminate sulfate Ca4Al6O16S , 1995 .

[41]  Keith Quillin,et al.  Performance of belite–sulfoaluminate cements , 2001 .

[42]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[43]  W. Jason Weiss,et al.  An inter lab comparison of gas transport testing procedures: Oxygen permeability and oxygen diffusivity , 2014 .

[44]  E. Gartner Industrially interesting approaches to “low-CO2” cements ☆ , 2004 .

[45]  Maria C.G. Juenger,et al.  Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers , 2012 .

[46]  B. Lothenbach,et al.  Contribution of limestone to the hydration of calcium sulfoaluminate cement , 2015 .

[47]  A. Leemann,et al.  Relation between carbonation resistance, mix design and exposure of mortar and concrete , 2015 .

[48]  P. Monteiro,et al.  Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite , 2014 .

[49]  B. Lothenbach,et al.  Hydration of calcium sulfoaluminate cements — Experimental findings and thermodynamic modelling , 2010 .

[50]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .