Chromatic Roots are Dense in the Whole Complex Plane

I show that the zeros of the chromatic polynomials $P_G(q)$ for the generalized theta graphs $\Theta^{(s,p)}$ are, taken together, dense in the whole complex plane with the possible exception of the disc $|q-1| < 1$. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) $Z_G(q,v)$ outside the disc $|q+v| < |v|$. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha–Kahane–Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.

[1]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[2]  Douglas R. Woodall,et al.  A zero-free interval for chromatic polynomials , 1992, Discret. Math..

[3]  R. Remmert,et al.  Theory of Complex Functions , 1990 .

[4]  W. T. Tutte On chromatic polynomials and the golden ratio , 1970 .

[5]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[6]  W. T. Tutte Chromatic sums for rooted planar triangulations. IV. The case $lambda =infty $ , 1973 .

[7]  C. Itzykson,et al.  Zeroes of the Partition Function for Statistical Models on Regular and Hierarchical Lattices , 1985 .

[8]  R Shrock,et al.  Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices: approach using infinite cyclic strip graphs. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  H. Temperley,et al.  New Representations of the Temperley-Lieb Algebra with Applications , 1993 .

[10]  H U G H E D W A R D S,et al.  The Zero-Free Intervals for Characteristic Polynomials of Matroids , 1998 .

[11]  W. T. Tutte Chromatic solutions. II , 1982 .

[12]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[13]  Shu-Chiuan Chang,et al.  Exact Potts model partition functions on strips of the honeycomb lattice , 2000, cond-mat/0008477.

[14]  Douglas R. Woodall Tutte polynomial expansions for 2-separable graphs , 2002, Discret. Math..

[15]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[16]  Shan-Ho Tsai,et al.  GROUND-STATE DEGENERACY OF POTTS ANTIFERROMAGNETS : HOMEOMORPHIC CLASSES WITH NONCOMPACT W BOUNDARIES , 1999 .

[17]  Ronald C. Read,et al.  Chromatic polynomials of homeomorphism classes of graphs , 1999, Discret. Math..

[18]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[19]  P P Martin,et al.  Block spin transformations in the operator formulation of two-dimensional Potts models , 1989 .

[20]  Ronald C. Read,et al.  The Tutte polynomial for homeomorphism classes of graphs , 2002, Discret. Math..

[21]  Shan-Ho Tsai End graph effects on chromatic polynomials for strip graphs of lattices and their asymptotic limits , 1998 .

[22]  J. M. Maillard,et al.  Hyperbolic coxeter groups, symmetry group invariants for lattice models in statistical mechanics and the Tutte-Beraha numbers , 1997 .

[23]  Robert Shrock Chromatic polynomials and their zeros and asymptotic limits for families of graphs , 2001, Discret. Math..

[24]  W. T. Tutte Chromatic Sums for Rooted Planar Triangulations, V: Special Equations , 1974, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[25]  Robert Shrock T=0 partition functions for Potts antiferromagnets on Möbius strips and effects of graph topology , 1999 .

[26]  Sridhar Hannenhalli,et al.  Efficient algorithms for computing matching and chromatic polynomials on series-parallel graphs , 1992, Proceedings ICCI `92: Fourth International Conference on Computing and Information.

[27]  David M. Jackson The Lattice of Non-crossing Partitions and the Birkhoff-Lewis Equations , 1994, Eur. J. Comb..

[28]  Robin Thomas,et al.  AN UPDATE ON THE FOUR-COLOR THEOREM , 1998 .

[29]  Heinz-Otto Peitgen,et al.  The beauty of fractals - images of complex dynamical systems , 1986 .

[30]  W. T. Tutte The Matrix of Chromatic Joins , 1993, J. Comb. Theory, Ser. B.

[31]  M. Kaufman,et al.  Spin systems on hierarchical lattices. Introduction and thermodynamic limit , 1982 .

[32]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. III. Triangular-Lattice Chromatic Polynomial , 2002, cond-mat/0204587.

[33]  Paul Martin,et al.  POTTS MODELS AND RELATED PROBLEMS IN STATISTICAL MECHANICS , 1991 .

[34]  Shan-Ho Tsai,et al.  Ground state entropy of Potts antiferromagnets on homeomorphic families of strip graphs , 1998, cond-mat/9807105.

[35]  Shu-Chiuan Chang,et al.  Exact Potts model partition function on strips of the triangular lattice , 2000 .

[36]  Paul Martin,et al.  The Potts model and the Beraha numbers , 1987 .

[37]  Heinz-Otto Peitgen,et al.  The mandelbrot set in a model for phase transitions , 1985 .

[38]  Kauffmann,et al.  An algebraic approach to the planar coloring problem , 1993 .

[39]  H. Whitney A logical expansion in mathematics , 1932 .

[40]  J. Maillard,et al.  Hyperbolic Coxeter groups for triangular Potts models , 1994 .

[41]  F. Y. Wu The Potts model , 1982 .

[42]  W. T. Tutte,et al.  The golden root of a chromatic polynomial , 1969 .

[43]  Jason I. Brown,et al.  The Existence of Infinitely Many Chromatic Roots With Negative Real Part , 2002 .

[44]  Shan-Ho Tsai,et al.  Chromatic polynomials for J(∏H)I strip graphs and their asymptotic limits , 1998 .

[45]  Shu-Chiuan Chang,et al.  Ground State Entropy of the Potts Antiferromagnet on Triangular Lattice Strips , 2001 .

[46]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[47]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. II. Extended Results for Square-Lattice Chromatic Polynomial , 2001 .

[48]  Carsten Thomassen,et al.  The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.

[49]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[50]  Halina Bielak Roots of chromatic polynomials , 2001, Discret. Math..

[51]  David G. Wagner,et al.  On the Chromatic Roots of Generalized Theta Graphs , 2001, J. Comb. Theory, Ser. B.

[52]  R. Baxter,et al.  q colourings of the triangular lattice , 1986 .

[53]  F. Y. Wu,et al.  On the rooted Tutte polynomial , 1998, cond-mat/9812202.

[54]  Jason I. Brown On the Roots of Chromatic Polynomials , 1998, J. Comb. Theory B.

[55]  S.-C. Chang,et al.  T=0 partition functions for Potts antiferromagnets on lattice strips with fully periodic boundary conditions , 2001 .

[56]  Jason I. Brown Chromatic polynomials and order ideals of monomials , 1998, Discret. Math..

[57]  Shu-Chiuan Chang,et al.  Structural properties of Potts model partition functions and chromatic polynomials for lattice strips , 2001 .

[58]  Geoffrey Grimmett The Rank Polynomials of Large Random Lattices , 1978 .

[59]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[60]  Shan-Ho Tsai,et al.  Asymptotic limits and zeros of chromatic polynomials and ground-state entropy of Potts antiferromagnets , 1997 .

[61]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[62]  Bernard Derrida,et al.  Oscillatory critical amplitudes in hierarchical models , 1984 .

[63]  Kenneth Appel,et al.  The Four-Color Problem , 1978 .

[64]  François Jaeger,et al.  Even subgraph expansions for the flow polynomial of cubic plane maps , 1991, J. Comb. Theory, Ser. B.

[65]  Elliott H. Lieb,et al.  A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .

[66]  Karl Dilcher,et al.  Zeros of Iterated Integrals of Polynomials , 1995 .

[67]  Bill Jackson,et al.  A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.

[68]  G. Grimmett The Stochastic Random-Cluster Process and the Uniqueness of Random-Cluster Measures , 1995 .

[69]  Ronald C. Read Chain polynomials of graphs , 2003, Discret. Math..

[70]  Jason I. Brown,et al.  On chromatic roots of large subdivisions of graphs , 2002, Discret. Math..

[71]  H.‐O. Peitgen,et al.  Fraktale und die Theorie der Phasenübergänge , 1986 .

[72]  E. J. FARRELL Chromatic roots - some observations and conjectures , 1980, Discret. Math..

[73]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[74]  Bernard Derrida,et al.  Fractal structure of zeros in hierarchical models , 1983 .

[75]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[76]  R. Israel Convexity in the Theory of Lattice Gases , 1979 .

[77]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[78]  H. Whitney The Coloring of Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Robert Shrock Exact Potts Model Partition Functions on Ladder Graphs , 2000 .

[80]  Joseph Kahane,et al.  Is the four-color conjecture almost false? , 1979, J. Comb. Theory B.

[81]  Shan-Ho Tsai,et al.  Ground-state degeneracy of Potts antiferromagnets: cases with noncompact W boundaries having multiple points at , 1998 .

[82]  Shu-Chiuan Chang,et al.  Exact Partition Function for the Potts Model with Next-Nearest Neighbor Couplings on Strips of the Square Lattice , 2000 .

[83]  R. Baxter,et al.  Chromatic polynomials of large triangular lattices , 1987 .

[84]  N. Weiss,et al.  Limits of zeroes of recursively defined polynomials. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[85]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[86]  R. M. Damerell,et al.  Recursive families of graphs , 1972 .

[87]  Shan-Ho Tsai,et al.  Lower bounds and series for the ground-state entropy of the Potts antiferromagnet on Archimedean lattices and their duals , 1997 .

[88]  Shan-Ho Tsai,et al.  Families of graphs with chromatic zeros lying on circles , 1997, cond-mat/9703249.

[89]  Pavel Bleher,et al.  Julia sets and complex singularities in hierarchical Ising models , 1990, math/9201275.

[90]  C. Fortuin,et al.  Phase transitions in lattice systems with random local properties , 1969 .

[91]  H. Whitney A Set of Topological Invariants for Graphs , 1933 .

[92]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[93]  Osgood Condition,et al.  On a Generalization of the , 2000 .

[94]  Steven D. Noble,et al.  Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width , 1998, Combinatorics, Probability and Computing.

[95]  Douglas R. Woodall,et al.  Chromatic polynomials, polygon trees, and outerplanar graphs , 1992, J. Graph Theory.

[96]  Douglas R. Woodall An inequality for chromatic polynomials , 1992, Discret. Math..

[97]  G. Royle,et al.  Location of Zeros of Chromatic and Related Polynomials of Graphs , 1994, Canadian Journal of Mathematics.

[98]  Qin,et al.  Diamond-type hierarchical lattices for the Potts antiferromagnet. , 1991, Physical review. B, Condensed matter.

[99]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[100]  Jason I. Brown,et al.  On chromatic roots with negative real part , 2002, Ars Comb..

[101]  Gek L. Chia,et al.  A bibliography on chromatic polynomials , 1997, Discret. Math..

[102]  G. Rollet,et al.  Inversion relations and symmetry groups for Potts models on the triangular lattice , 1994 .

[103]  W. T. Tutte THE GOLDEN RATIO IN THE THEORY OF CHROMATIC POLYNOMIALS. , 1970 .

[104]  Shu-Chiuan Chang,et al.  Exact Potts model partition functions on wider arbitrary-length strips of the square lattice , 2001 .

[105]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[106]  Shan-Ho Tsai,et al.  Ground State Entropy of Potts Antiferromagnets on Cyclic Polygon Chain Graphs , 1999 .

[107]  D. W. Hall,et al.  The chromatic polynomial of the truncated icosahedron , 1965 .

[108]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[109]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[110]  Norman Biggs,et al.  A Matrix Method for Chromatic Polynomials , 2001, J. Comb. Theory, Ser. B.

[111]  Shan-Ho Tsai,et al.  Exact partition functions for Potts antiferromagnets on cyclic lattice strips , 1999 .

[112]  Norman Biggs,et al.  T = 0 partition functions for Potts antiferromagnets on square lattice strips with (twisted) periodic boundary conditions , 1999, cond-mat/0001407.

[113]  P. Montel,et al.  Lecons sur les familles normales de fonctions analytiques et leurs applications , 1974 .

[114]  Shan-Ho Tsai,et al.  LETTER TO THE EDITOR: Ground-state entropy of the Potts antiferromagnet on cyclic strip graphs , 1999 .

[115]  Shrock,et al.  Ground-state entropy of the potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[116]  Shan-Ho Tsai,et al.  Chromatic polynomials for families of strip graphs and their asymptotic limits , 1998 .

[117]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[118]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[119]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[120]  Carsten Thomassen Chromatic Roots and Hamiltonian Paths , 2000, J. Comb. Theory, Ser. B.

[121]  Timo Seppäläinen,et al.  Entropy for translation-invariant random-cluster measures , 1998 .

[122]  Douglas R. Woodall The largest real zero of the chromatic polynomial , 1997, Discret. Math..

[123]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[124]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[125]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[126]  Shu-Chiuan Chang,et al.  Ground state entropy of the Potts antiferromagnet on strips of the square lattice , 2001 .

[127]  Shan-Ho Tsai,et al.  Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0 , 1997 .

[128]  S. Beraha,et al.  Limits of chromatic zeros of some families of maps , 1980, J. Comb. Theory B.

[129]  Bruce E. Sagan,et al.  Sinks in Acyclic Orientations of Graphs , 2000, J. Comb. Theory, Ser. B.

[130]  William T. Tutte A Ring in Graph Theory , 1947 .