Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells

Metal/insulator/metal (MIM) diodes work on the inherently fast mechanism of tunneling and have been used in a number of high-frequency applications. This makes them a promising candidate as the rectifying element in rectenna solar cells. In this chapter we describe the operating mechanism of these diodes and review the work done on using them in rectennas. We also provide a simulation methodology to accurately model low-barrier MIM diodes that are used in rectennas. Analytical models based on the WKB method for probability of tunneling are not well suited for analyzing such diodes. We simulate single-insulator (MIM) diodes with varying asymmetry to point out their limited nonlinearity. We also simulate double-insulator (MIIM) diodes that have improved nonlinearity as compared to MIM diodes providing a path for designing more efficient multi-insulator diodes.

[1]  Wolfgang Porod,et al.  Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes , 2009 .

[2]  Herbert Kroemer Quantum mechanics , 1994 .

[3]  S. T. Eng,et al.  Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method , 1990 .

[4]  Analytical formula for the tunneling current versus voltage for multilayer barrier structures , 2007 .

[5]  T. K. Gustafson,et al.  Coupling characteristics of thin‐film metal‐oxide‐metal diodes at 10.6 μ , 1975 .

[6]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[7]  T. Sugano,et al.  Single Electron Device with Asymmetric Tunnel Barriers , 1995 .

[8]  Glenn D. Boreman,et al.  Detection mechanisms in microstrip dipole antenna-coupled infrared detectors , 2003 .

[9]  Tunneling through arbitrary potential barriers and the apparent barrier height , 2002 .

[10]  G. Moddel,et al.  Traveling-Wave Metal/Insulator/Metal Diodes for Improved Infrared Bandwidth and Efficiency of Antenna-Coupled Rectifiers , 2010, IEEE Transactions on Nanotechnology.

[11]  Craig S. Lent,et al.  The quantum transmitting boundary method , 1990 .

[12]  Prakash Periasamy,et al.  Metal-insulator-metal point-contact diodes as a rectifier for rectenna , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[13]  D. Sokoloff,et al.  EXTENSION OF LASER HARMONIC‐FREQUENCY MIXING TECHNIQUES INTO THE 9 μ REGION WITH AN INFRARED METAL‐METAL POINT‐CONTACT DIODE , 1969 .

[14]  Robert Stratton,et al.  Volt-current characteristics for tunneling through insulating films , 1962 .

[15]  Sachit Grover,et al.  Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator tunnel barriers , 2012 .

[16]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[17]  K. Siemsen,et al.  Point-contact diodes , 1984 .

[18]  K. Likharev,et al.  Resonant Fowler-Nordheim tunneling through layered tunnel barriers and its possible applications , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[19]  S. Marchetti,et al.  Theoretical and experimental responsivity of fir antenna coupled metal-insulator-metal detectors , 1997 .

[20]  P. Hobbs,et al.  Efficient waveguide-integrated tunnel junction detectors at 1.6 mum. , 2007, Optics express.

[21]  Nobuhiko Kanbara,et al.  Antenna-coupled rectifying diode for IR detection , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[22]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[23]  Wolfgang Porod,et al.  Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators , 2007 .

[24]  Glenn D. Boreman,et al.  Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR , 2004, SPIE Defense + Commercial Sensing.

[25]  J. Simmons Conduction in thin dielectric films , 1971 .

[26]  G. Moddel,et al.  Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas , 2011, IEEE Journal of Photovoltaics.

[27]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[28]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[29]  Kenneth M. Evenson,et al.  ABSOLUTE FREQUENCY MEASUREMENTS OF THE 28‐ AND 78‐μm cw WATER VAPOR LASER LINES , 1970 .

[30]  A. Puri,et al.  Comparison of image-potential theories , 1983 .

[31]  Richard R. A. Syms,et al.  Electrical Properties of Materials , 2018, Nature.

[32]  C. Kittel Introduction to solid state physics , 1954 .

[33]  H. Riccius Improved metal-insulator-metal point-contact diodes for harmonic generation and mixing , 1978 .

[34]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[35]  Moichiro Nagae,et al.  Response Time of Metal-Insulator-Metal Tunnel Junctions , 1972 .

[36]  Tina Quach,et al.  Radio Frequency Integrated Circuits (RFIC) Symposium , 2005, Radio Frequency Integrated Circuits Symposium.

[37]  Erich N. Grossman,et al.  First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging , 2007, SPIE Defense + Commercial Sensing.

[38]  Abdulhakem Y. Elezzabi,et al.  Enhanced rectifying response from metal-insulator-insulator-metal junctions , 2011 .

[39]  B. Hopkins,et al.  The Work Function of Polycrystalline Tungsten Foil , 1963 .

[40]  A. Hartstein,et al.  On the nature of the image force in quantum mechanics with application to photon assisted tunnelling and photoemission , 1978 .

[41]  S. Rockwell,et al.  Characterization and Modeling of Metal/Double-Insulator/Metal Diodes for Millimeter Wave Wireless Receiver Applications , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.