Saturated robust power system stabilizers

Abstract In this paper, a new saturated control design for uncertain power systems is proposed. The developed saturated control scheme is based on linear matrix inequality (LMI) optimization to achieve prescribed dynamic performance measures, e.g., settling time and damping ratio. In this design, the closed-loop poles are forced to lie within a desired region. The proposed design provides robustness against system uncertainties. The simulation results of both a single machine infinite bus and a multi-machine power systems are given to validate the effectiveness of the proposed controller.

[1]  Zongli Lin,et al.  Stability analysis of discrete-time systems with actuator saturation by a saturation-dependent Lyapunov function , 2003, Autom..

[2]  Deqiang Gan,et al.  A method for evaluating the performance of PSS with saturated input , 2007 .

[3]  Faryar Jabbari,et al.  Disturbance attenuation for systems with input saturation: An LMI approach , 1999, IEEE Trans. Autom. Control..

[4]  Tingshu Hu,et al.  The equivalence of several set invariance conditions under saturation , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  Abdellah Benzaouia,et al.  The Regulator Problem for Linear Systems With Saturations on the Control and its Increments or Rate: An LMI Approach , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Dewei Li,et al.  Synthesis of dynamic output feedback RMPC with saturated inputs , 2013, Autom..

[7]  Magdi S. Mahmoud Decentralized Systems with Design Constraints , 2011 .

[8]  José Claudio Geromel,et al.  Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[9]  Magdi S. Mahmoud,et al.  Resilient static output feedback power system stabiliser using PSO-LMI optimisation , 2013 .

[10]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[11]  P. Kundur,et al.  Power system stability and control , 1994 .

[12]  Janusz Bialek,et al.  Power System Dynamics: Stability and Control , 2008 .

[13]  K R Padiyar,et al.  Power System Dynamics , 2002 .

[14]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[15]  H. Xin,et al.  Impact of saturation nonlinearities/disturbances on the small-signal stability of power systems: An analytical approach , 2008 .

[16]  Sophie Tarbouriech,et al.  Stability analysis and stabilization of systems presenting nested saturations , 2006, IEEE Transactions on Automatic Control.

[17]  A. Hmamed,et al.  Regulator problem for linear continuous-time systems with nonsymmetrical constrained control , 1993, IEEE Trans. Autom. Control..

[18]  Faryar Jabbari,et al.  Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation , 2000, Autom..

[19]  Zongli Lin,et al.  Semi-global Exponential Stabilization of Linear Systems Subject to \input Saturation" via Linear Feedbacks , 1993 .

[20]  D. Mehdi,et al.  Pole assignment in LMI regions for linear constrained control systems , 2007, 2007 Mediterranean Conference on Control & Automation.

[21]  Amin Khodabakhshian,et al.  Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory , 2012 .

[22]  Chao Wu,et al.  Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation , 2005, Syst. Control. Lett..

[23]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[24]  Chunwen Li,et al.  Saturated Excitation Control of Multi-machine Multi-load Power Systems Using Hamiltonian Function Method , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[25]  Magdi S. Mahmoud,et al.  Guaranteed-cost reliable control with regional pole placement of a power system , 2011, J. Frankl. Inst..

[26]  B. Pal,et al.  Robust Control in Power Systems , 2005 .

[27]  Tingshu Hu,et al.  An analysis and design method for linear systems subject to actuator saturation and disturbance , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[28]  Abdellah Benzaouia,et al.  Robust pole assignment in complex plane regions for linear uncertain constrained control systems , 2001 .

[29]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[30]  Tong Heng Lee,et al.  Composite nonlinear feedback control for linear systems with input saturation: theory and an application , 2003, IEEE Trans. Autom. Control..

[31]  O.P. Malik,et al.  Neurofuzzy Power System Stabilizer , 2008, IEEE Transactions on Energy Conversion.

[32]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[33]  M. A. Abido,et al.  A particle-swarm-based approach of power system stability enhancement with unified power flow controller , 2007 .

[34]  Abdellah Benzaouia,et al.  Regulator problem for linear systems with constraints on control and its increment or rate , 2004, Autom..

[35]  O.P. Malik,et al.  Design of an Adaptive PSS Based on Recurrent Adaptive Control Theory , 2009, IEEE Transactions on Energy Conversion.

[36]  E. L. Harder,et al.  The Institute of Electrical and Electronics Engineers, Inc. , 2019, 2019 IEEE International Conference on Software Architecture Companion (ICSA-C).

[37]  Zongli Lin,et al.  Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks , 1995 .

[38]  Hisham M. Soliman,et al.  Robust power system stabiliser , 2000 .