A quadrilateral nonconforming finite element for linear elasticity problem

In this paper, a four-parameter quadrilateral nonconforming finite element with DSP (double set parameters) is presented. Then we discuss the quadrilateral nonconforming finite element approximation to the linear elastic equations with pure displacement boundary. The optimal convergence rate of the method is established in the broken $H^1$ energy and $L^2$-norms, and in particular, the convergence is uniform with respect to the Lamé parameter $\lambda$. Also the performance of the scheme does not deteriorate as the material becomes nearly incompressible. Lastly, a numerical test is carried out, which coincides with our theoretical analysis.

[1]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[2]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[3]  Zhongci Shi The F-E-M test for convergence of nonconforming finite elements , 1987 .

[4]  Lois Mansfield On finite element subspaces over quadrilateral and hexahedral meshes for incompressible viscous flow problems , 1984 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[7]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[8]  R. S. Falk Nonconforming finite element methods for the equations of linear elasticity , 1991 .

[9]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[10]  Chang-Ock Lee A conforming mixed finite element method for the pure traction problem of linear elasticity , 1998, Appl. Math. Comput..

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[13]  R. A. Nicolaides,et al.  On the stability of bilinear-constant velocity-pressure finite elements , 1984 .

[14]  R. Stenberg,et al.  Analysis of Some Mixed Finite Element Methods for Plane Elasticity Equations , 1983 .

[15]  J. Douglas,et al.  A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations , 1999 .

[16]  R. Stenberg,et al.  Mixed $hp$ finite element methods for problems in elasticity and Stokes flow , 1996 .

[17]  Shi,et al.  CONSTRAINED QUADRILATERAL NONCONFORMING ROTATED Q1 ELEMENT , 2005 .

[18]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[19]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[20]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[21]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[24]  Friedrich Stummel,et al.  The Generalized Patch Test , 1979 .

[25]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[26]  R. A. Nicolaides,et al.  Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .

[27]  D. Arnold,et al.  A new mixed formulation for elasticity , 1988 .

[28]  Zhongci Shi A convergence condition for the quadrilateral Wilson element , 1984 .

[29]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[30]  Shaochun Chen,et al.  Plate Elements With High Accuracy , 1997 .

[31]  D. Arnold Discretization by finite elements of a model parameter dependent problem , 1981 .

[32]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .

[33]  Dongwoo Sheen,et al.  A Locking-Free Nonconforming Finite Element Method for Planar Linear Elasticity , 2003, Adv. Comput. Math..

[34]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[35]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[36]  Zhimin Zhang,et al.  Analysis of Some Quadrilateral Nonconforming Elements for Incompressible Elasticity , 1997 .