Pattern recognition: Historical perspective and future directions

Pattern recognition is one of the most important functionalities for intelligent behavior and is displayed by both biological and artificial systems. Pattern recognition systems have four major components: data acquisition and collection, feature extraction and representation, similarity detection and pattern classifier design, and performance evaluation. In addition, pattern recognition systems are successful to the extent that they can continuously adapt and learn from examples; the underlying framework for building such systems is predictive learning. The pattern recognition problem is a special case of the more general problem of statistical regression; it seeks an approximating function that minimizes the probability of misclassification. In this framework, data representation requires the specification of a basis set of approximating functions. Classification requires an inductive principle to design and model the classifier and an optimization or learning procedure for classifier parameter estimation. Pattern recognition also involves categorization: making sense of patterns not previously seen. The sections of this paper deal with the categorization and functional approximation problems; the four components of a pattern recognition system; and trends in predictive learning, feature selection using “natural” bases, and the use of mixtures of experts in classification. © 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 11, 101–116, 2000

[1]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[2]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[3]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[4]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[5]  F. Keil,et al.  Categorical effects in the perception of faces , 1995, Cognition.

[6]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[7]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[8]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[9]  Harry Wechsler,et al.  Face pose discrimination using support vector machines (SVM) , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[10]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[11]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[12]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[13]  Leslie G. Valiant,et al.  A View of Computational Learning Theory , 1993 .

[14]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[15]  John Daugman,et al.  Six formal properties of two-dimensional anisotropie visual filters: Structural principles and frequency/orientation selectivity , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[17]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[18]  William K. Estes,et al.  Concepts, Categories, and Psychological Science , 1993 .

[19]  Dennis Gabor,et al.  Theory of communication , 1946 .

[20]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[21]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[23]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[24]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[25]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[26]  Erkki Oja,et al.  Unsupervised learning in neural computation , 2002, Theor. Comput. Sci..

[27]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Anastasios Tefas,et al.  Face verification based on morphological shape decomposition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[29]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[30]  Simone Santini,et al.  The Graphical Specification of Similarity Queries , 1996, J. Vis. Lang. Comput..

[31]  G. Lorentz Approximation of Functions , 1966 .

[32]  Hartmut Neven,et al.  The Bochum / USC Face Recognition Systemand How it Fared in the FERET Phase , 1998 .

[33]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[34]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[35]  G. Rhodes,et al.  Identification and ratings of caricatures: Implications for mental representations of faces , 1987, Cognitive Psychology.

[36]  L. Goddard Approximation of Functions , 1965, Nature.

[37]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Robert A. Johnston,et al.  A Unified Account of the Effects of Caricaturing Faces , 1999 .

[39]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[40]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[41]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[42]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[43]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[44]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[45]  Richard P. Lippmann,et al.  A Comparative Study of the Practical Characteristics of Neural Network and Conventional Pattern Classifiers , 1990, NIPS 1990.

[46]  L. Breiman Arcing Classifiers , 1998 .

[47]  Alice J. O'Toole,et al.  Low-dimensional representation of faces in higher dimensions of the face space , 1993 .

[48]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[49]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[50]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[51]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[52]  Shree K. Nayar,et al.  Catadioptric omnidirectional camera , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[54]  John R. Vokey,et al.  The Face-Space Typicality Paradox: Understanding the Face-Space Metaphor , 1998 .

[55]  Harry Wechsler,et al.  Fast searching of digital face libraries using binary image metrics , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[56]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[57]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[58]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[59]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[60]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[62]  L. Squire,et al.  The learning of categories: parallel brain systems for item memory and category knowledge. , 1993, Science.

[63]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[64]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[65]  John R. Vokey,et al.  Memorability, familiarity and categorical structure in the recognition of faces , 2002 .

[66]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[68]  Gillian Rhodes,et al.  Coding spatial variations in faces and simple shapes: a test of two models , 1998, Vision Research.

[69]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[70]  Robert P. W. Duin,et al.  Bagging for linear classifiers , 1998, Pattern Recognit..

[71]  R Hecht-Nielsen,et al.  Replicator neural networks for universal optimal source coding. , 1995, Science.

[72]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  H. Barrow,et al.  Computational vision , 1981, Proceedings of the IEEE.

[74]  Massimo Tistarelli,et al.  Recognition by using an active/space-variant sensor , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[75]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[76]  Aaron F. Bobick,et al.  A Framework for Recognizing Multi-Agent Action from Visual Evidence , 1999, AAAI/IAAI.

[77]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[78]  Chengjun Liu,et al.  Robust coding schemes for indexing and retrieval from large face databases , 2000, IEEE Trans. Image Process..

[79]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[80]  A. Barron Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.

[81]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[83]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[84]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[85]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[86]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[88]  D. Ruderman The statistics of natural images , 1994 .

[89]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[90]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[91]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994 .

[92]  H. Wechsler,et al.  Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition , 1999 .

[93]  Tomaso A. Poggio,et al.  A Sparse Representation for Function Approximation , 1998, Neural Computation.

[94]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .

[95]  T Poggio,et al.  Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks , 1990, Science.

[96]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[97]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[98]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[99]  Alex Pentland,et al.  Understanding purposeful human motion , 1999, Proceedings IEEE International Workshop on Modelling People. MPeople'99.

[100]  Luc Vandendorpe,et al.  The M2VTS Multimodal Face Database (Release 1.00) , 1997, AVBPA.

[101]  Jerome H. Friedman,et al.  An Overview of Predictive Learning and Function Approximation , 1994 .

[102]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[103]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[104]  Alex Pentland,et al.  Face Recognition for Smart Environments , 2000, Computer.

[105]  Mitchell Feigenbaum,et al.  Local feature analysis: a statistical theory for information representation and transmission , 1998 .

[106]  Roberto Cipolla,et al.  A probabilistic framework for perceptual grouping of features for human face detection , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[107]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[108]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[109]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[110]  Yi Li,et al.  A multiscale morphological method for human posture recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[111]  Kevin W. Bowyer,et al.  Empirical evaluation techniques in computer vision , 1998 .

[112]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[113]  Anders Krogh,et al.  Neural Network Ensembles, Cross Validation, and Active Learning , 1994, NIPS.

[114]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[115]  A. Tversky Features of Similarity , 1977 .

[116]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[117]  R.P. Lippmann,et al.  Pattern classification using neural networks , 1989, IEEE Communications Magazine.

[118]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[119]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[120]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[121]  Ron Kohavi,et al.  Feature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology , 1995, KDD.

[122]  Chengjun Liu,et al.  Face Recognition Using Evolutionary Pursuit , 1998, ECCV.

[123]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[124]  John Daugman,et al.  An information-theoretic view of analog representation in striate cortex , 1993 .

[125]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[126]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[127]  Geoffrey E. Hinton Products of experts , 1999 .