LMI Robust Control of PWM Converters: An Output-Feedback Approach

This chapter proposes a systematic approach for the synthesis of robust controllers for dc-dc converters. The approach is based on the Linear Matrix Inequalities (LMIs) framework and the associated optimization algorithms. The aim of this approach is to allow the designer to describe the uncertainty of the converter and to deal with the requirements of the application beforehand. The aforementioned dc-dc converters (see Figure 1) are devices that deliver a dc output voltage, with different properties from those in the input voltage (Erickson & Maksimovic, 1999). They are usually employed to adapt energy sources to the load requirements (or vice versa). These devices present several challenges regarding their robust control. First, the converter must maintain a tight regulation or tracking of the output. Moreover, the controller design is focused on maximizing the bandwidth of the closed-loop response in order to reject the usual disturbances that appear in these systems. Finally, the response of the converter must satisfy desirable transient characteristics, as for example, the shortest possible output settling time or the minimum overshoot. Besides of these common requirements, the converter can be affected by uncertainty in its components or by input or output disturbances that may appear.

[1]  Alain Oustaloup,et al.  Conception de commandes robustes , 2002 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  Dimitri Peaucelle,et al.  Robust performance analysis with LMI-based methods for real parametric uncertainty via parameter-dependent Lyapunov functions , 2001, IEEE Trans. Autom. Control..

[4]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[5]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[6]  Isabelle Queinnec,et al.  Robust Linear Control of DC-DC Converters , 2010 .

[7]  Isabelle Queinnec,et al.  Robust LQR Control for PWM Converters: An LMI Approach , 2009, IEEE Transactions on Industrial Electronics.

[8]  Olivier Lefebvre,et al.  Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS , 2007 .

[9]  Dragan Maksimovic,et al.  Computer-aided small-signal analysis based on impulse response of DC/DC switching power converters , 2000 .

[10]  G. Escobar,et al.  A robustly stable output feedback saturated controller for the Boost DC-to-DC converter , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[11]  T. Hu A Nonlinear-System Approach to Analysis and Design of Power-Electronic Converters With Saturation and Bilinear Terms , 2011, IEEE Transactions on Power Electronics.

[12]  Dimitri Peaucelle,et al.  An iterative method for mixed H2/H8 synthesis via static output-feedback , 2002 .

[13]  Isabelle Queinnec,et al.  H∞ control of DC-DC converters with saturated inputs , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[14]  Isabelle Queinnec,et al.  LMI robust control design for boost PWM converters , 2010 .

[15]  M. Weiss,et al.  Robust and optimal control : By Kemin Zhou, John C. Doyle and Keith Glover, Prentice Hall, New Jersey, 1996, ISBN 0-13-456567-3 , 1997, Autom..

[16]  A. El Aroudi,et al.  Robust optimal control of bilinear DC–DC converters , 2011 .

[17]  Y. Pyatnitskiy,et al.  Numerical methods of Lyapunov function construction and their application to the absolute stability problem , 1982 .

[18]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[19]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[20]  Isabelle Queinnec,et al.  Passivity-based integral control of a boost converter for large-signal stability , 2006 .

[21]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[22]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[23]  Robert W. Erickson,et al.  Fundamentals of Power Electronics , 2001 .

[24]  Ricardo C. L. F. Oliveira,et al.  LMI approach for H linear parameter-varying state feedback control , 2005 .

[25]  Sophie Tarbouriech,et al.  Pole assignment in a disk for linear systems by static output feedback , 2003, Proceedings of the 2003 American Control Conference, 2003..

[26]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[27]  C. Nett,et al.  Minimal complexity control law synthesis , 1989 .

[28]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[29]  J. Geromel,et al.  Numerical comparison of output feedback design methods , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[30]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[31]  Christian Courties Sur la commande robuste et lpv de systemes a parametres lentement variables , 1999 .

[32]  R.D. Middlebrook,et al.  Sampled-data modeling of switching regulators , 1981, 1981 IEEE Power Electronics Specialists Conference.

[33]  GENE F. WALLIS,et al.  Generalized approach for μ synthesis of robust switching regulators , 2000, IEEE Trans. Aerosp. Electron. Syst..

[34]  R. Leyva,et al.  Fuzzy control in DC-DC converters: An LMI approach , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.