Scribability problems for polytopes

Abstract In this paper we study various scribability problems for polytopes. We begin with the classical k -scribability problem proposed by Steiner and generalized by Schulte, which asks about the existence of d -polytopes that cannot be realized with all k -faces tangent to a sphere. We answer this problem for stacked and cyclic polytopes for all values of d and k . We then continue with the weak scribability problem proposed by Grunbaum and Shephard, for which we complete the work of Schulte by presenting non weakly circumscribable 3 -polytopes. Finally, we propose new ( i , j ) -scribability problems, in a strong and a weak version, which generalize the classical ones. They ask about the existence of d -polytopes that cannot be realized with all their i -faces “avoiding” the sphere and all their j -faces “cutting” the sphere. We provide such examples for all the cases where j − i ≤ d − 3 .

[1]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[2]  Igor Rivin On geometry of convex ideal polyhedra in hyperbolic 3-space , 1993 .

[3]  Raimund Seidel,et al.  Exact Upper Bounds for the Number of Faces in d-Dimensional Voronoi Diagrams , 1990, Applied Geometry And Discrete Mathematics.

[5]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[6]  G. Ziegler,et al.  Fat 4-polytopes and fatter 3-spheres , 2002, math/0204007.

[7]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[8]  È. Vinberg,et al.  DISCRETE LINEAR GROUPS GENERATED BY REFLECTIONS , 1971 .

[9]  D. Barnette The minimum number of vertices of a simple polytope , 1971 .

[10]  G. Ziegler Lectures on Polytopes , 1994 .

[11]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[12]  J. W. Gaddum Distance Sums on a Sphere and Angle Sums in a Simplex , 1956 .

[13]  È. Vinberg,et al.  DISCRETE GROUPS GENERATED BY REFLECTIONS IN LOBAČEVSKIĬ SPACES , 1967 .

[14]  Karim A. Adiprasito,et al.  Many projectively unique polytopes , 2012, 1212.5812.

[15]  Hao Chen,et al.  Apollonian Ball Packings and Stacked Polytopes , 2013, Discret. Comput. Geom..

[16]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[17]  Hao Chen EVEN MORE INFINITE BALL PACKINGS FROM LORENTZIAN COXETER SYSTEMS , 2015 .

[18]  G. Ziegler,et al.  Inscribable stacked polytopes , 2011, 1111.5322.

[19]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[20]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[21]  Hao Chen,et al.  Even More Infinite Ball Packings from Lorentzian Root Systems , 2014, Electron. J. Comb..

[22]  Michael B. Dillencourt,et al.  Graph-theoretical conditions for inscribability and Delaunay realizability , 1996, Discret. Math..

[23]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[24]  Alexander Below Complexity of triangulation , 2002 .

[25]  M. G. Dobbins Representations of polytopes , 2011 .

[26]  E. M. Andreev ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES , 1970 .

[27]  Branko Grünbaum,et al.  Some problems on polyhedra , 1987 .

[28]  Hao Chen,et al.  Lorentzian Coxeter systems and Boyd–Maxwell ball packings , 2013, 1310.8608.

[29]  B. Sturmfels Cyclic polytopes and d-order curves , 1987 .

[30]  Arnau Padrol,et al.  Neighborly inscribed polytopes and delaunay triangulations , 2013, ArXiv.

[31]  Hyperideal circle patterns , 2004, math/0407043.

[32]  Raul Cordovil,et al.  Cyclic Polytopes and Oriented Matroids , 2000, Eur. J. Comb..

[33]  Igor Rivin Combinatorial optimization in geometry , 2003, Adv. Appl. Math..

[34]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[35]  Michael Gene Dobbins Antiprismlessness, or: Reducing Combinatorial Equivalence to Projective Equivalence in Realizability Problems for Polytopes , 2017, Discret. Comput. Geom..

[36]  Igor Rivin A characterization of ideal polyhedra in hyperbolic $3$-space , 1996 .

[37]  Richard Hughes,et al.  Geometry and Topology of 3-manifolds , 2011 .

[38]  Günter M. Ziegler,et al.  The Et-Construction for Lattices, Spheres and Polytopes , 2004, Discret. Comput. Geom..

[39]  Moritz Firsching Realizability and inscribability for simplicial polytopes via nonlinear optimization , 2017, Math. Program..

[40]  Oded Schramm How to cage an egg , 1992 .

[41]  F. Bonahon,et al.  Hyperideal polyhedra in hyperbolic 3-space , 2002 .

[42]  Moritz Firsching Realizability and inscribability for some simplicial spheres and matroid polytopes , 2015 .

[43]  Shang-Hua Teng,et al.  Disk packings and planar separators , 1996, SCG '96.

[44]  Bruna Tanaka Cremonini,et al.  Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.

[45]  Ernst Steinitz Über isoperimetrische Probleme bei konvexen Polyedern. , 1927 .

[46]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[47]  K. Weierstrass Systematische Entwickelung der Abhängigkeit geometrischer Gestalten von einander , 1881 .

[48]  W. Bowen,et al.  Philadelphia , 1892 .

[49]  Jean-Marc Schlenker,et al.  Polyhedra inscribed in a quadric , 2014, Inventiones mathematicae.

[50]  Warren D. Smith,et al.  A characterization of convex hyperbolic polyhedra and of convex polyhedra inscribed in the sphere , 1992, math/9210218.

[51]  G. Ziegler Convex Polytopes: Extremal Constructions and f -Vector Shapes , 2004, math/0411400.